

TABLE OF CONTENTS

BUILDING THE LONGEST LASTING ROLLER CHAIN		SPECIAL APPLICATION CHAIN Pin Oven Chain	59 60
HISTORY ISO 9001 Chain Components Manufacturing Process	2 4 6 6	Standard Pin Oven Chain RING LEADER® O-ring Pin Oven Chain Bindery Chain Plastic Film Feeder Chain Serrated Top Chain	60 60 63 63
CHAIN PERFORMANCE Why Use Roller Chain? Cost Comparison Work Sheet	10 11 12	Additional Clearance Chain POWER CURVE® Chain TUF-FLEX® Chain – Straight Runner Straight running and side-flexing	64 64 64
STANDARD AND HEAVY SERIES CHAIN Non-standard Chain Obsolete Chain DOUBLE-PITCH POWER TRANSMISSION AND	13 17 18	roller chain – for snap on Flat Top Coupling Chain Micropitch® Chain Powersports Chain	65 66 67 67
CONVEYOR ROLLER CHAIN	19	SPECIALTY/MADE-TO-ORDER ATTACHMENTS	69
ATTACHMENT CHAIN - ASME/ANSI STANDARD	23	CHAIN TOOLS	85
MULTIPLE STRAND CHAIN	29	TECHNICAL ENGINEERING	89
HIGH STRENGTH/LIFT CHAIN High Strength Drive Chain Hoist Chain Rollerless Lift Chain Terminal Fittings	35 36 37 37 38	General Drive Considerations Chain Selection Drive Chain Drive Selection Software Conveyor Chain	90 99 99 110 119
OIL FIELD CHAIN	39	Roller Chain Installation Roller Chain Lubrication	131 136
SPECIAL LUBRICATED CHAIN DURALUBE® Chain RING LEADER® O-ring Chain	45 46 47	Roller Chain Maintenance Horsepower Rating Tables Sprocket Information	138 141 158
DustStopper™ Chain	48	ORDERING INFORMATION	167
CORROSION/MOISTURE RESISTANT CHAIN Nickel-Plated Chain Diamond ACE® Chain	49 50 51	Chain Components Chain Length in Pitches to Feet Conversion Table	172 173
Stainless Steel Chain AP Stainless 300 Series Stainless Chain 400 Series Stainless Chain	52 52 52 52	INDEX	177

HOW TO USE THIS PRODUCT GUIDE

600 Series Stainless Chain Corrosion Resistance Information

THIS PRODUCT GUIDE PROVIDES A COMPREHENSIVE OVERVIEW TO ORDERING AND SPECIFYING DIAMOND® BRAND ROLLER CHAIN. USE IT TO:

Leamhow Diamond chain is manufactured to be the longest lasting chain.

52

Identify and select replacement chain for existing ANSI drive, attachment or special chain applications.

Select the most appropriate chain for new applications.

Leamhow to maintain Diamond chain.

Order chains, components, tools and accessories.

Consult the Table of Contents for a listing of general sections, or select individual products or subjects from the index at the end of this product guide.

ORDERING

For complete ordering information, terms and conditions, please see the Ordering section noted in the table of contents.

Nothing outlasts a Diamond. www.diamondchain.com

DIAMOND CHAIN HISTORY

Diamond Chain has a long history of producing the highest quality roller chain. As one of the oldest roller chain manufacturers in the world, Diamond has learned a few things over the years about improving the quality, and ultimately the value, of every chain it makes. The following

pages provide a glimpse into that history and the lessons that Diamond has learned that are built into the best roller chain available.

Arthur C. Newby, Edward C. Fletcher and Glenn Howe, with a \$5,000 investment, started what was to become the Diamond Chain Company by forming The Indianapolis Chain & Stamping Company on December 24, 1890. They took the diamond as their trademark because it symbolized perfection and acted as a constant reminder of their endeavor. In its humble beginnings, The Indianapolis Chain & Stamping Company (IC&SC) specialized in

bicycle chain. As one of the first companies in the United States to produce bicycle chain, IC&SC prospered, outgrowing its original quarters and moving

to larger facilities in 1892.

In 1901, when the bicycle chain business slumped, IC&SC rebounded by developing and introducing to industry a twin-roller roller chain.

From December 17, 1903, when Diamond chain was used on the Wright brothers' first flying machine, to the present, Diamond Chain has been a major supplier of chain for aircraft, motorcycles, engines and various other uses.

In 1950 Diamond Chain was acquired by American Steel Foundries, Inc. – the largest steel foundry in the world, and in 1962 the name of the parent company was changed to AMSTED Industries Incorporated.

During Diamond's many years of producing the highest quality roller chain they have tested, examined and discovered many developments which have significantly increased the performance of their roller chains. These developments have rarely become "product lines" but rather, "product improvements" which have been incorporated into daily production so that all customers can benefit, without special requests or premium prices.

In addition to continued product improvement, Diamond has introduced a detailed roller chain Drive Selection Software program. This software will improve the way chain is specified by engineers and designers by simplifying a multitude of sometimes difficult calculations and equations.

In today's environment, Diamond, while focusing on the increased use of technology, still operates under the same inventive, grassroots philosophy it was founded on – providing its customers with a high-quality product possessing the best balance of performance, reliability, price and delivery that meet or exceed their requirements.

TAKE A CLOSER LOOK AT DIAMOND, YOU'LL SEE THE VALUE

If you're looking for the best roller chain that money can buy, it'll pay to take a closer look at Diamond roller chain. Diamond roller chain may look like your everyday chain, but upon closer inspection there are numerous differences that translate into superior performance and better value. From the strict attention to detail to the design of the chain itself, to the extra steps we take during manufacturing, those differences really add up on your bottom line. We build long life, lasting value and enduring customer relationships into every link of chain...and that is the Diamond difference.

Over the years we've produced tens

of thousands of types of roller chain for a wide variety of applications from oil field and deco ovens, to conveyors and combines. So, if your application calls for some special attention, our application engineers can easily help you find that lasting solution.

Please, take a closer look at Diamond roller chain...we do.

That closer look is what makes ours better than other chains. And what you can't see, you can experience with improved performance — which means less downtime, less repair costs and increased productivity. Those are just some of the differences that a Diamond chain makes.

ISO 9001 CERTIFIED

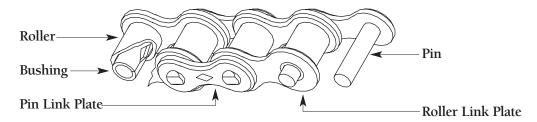
ISO 9001

Building high-quality roller chain is a matter of demanding precision – a matter of establishing critical parameters, both in component fabrication and final assembly, and monitoring them to ensure that they are maintained.

ISO 9001:2000 certification is awarded to companies that specify requirements for a quality management system and demonstrate their ability to provide products that fulfill customer requirements and aims to enhance customer satisfaction. **Diamond is**

ISO 9001:2000 certified. That means you can be sure that Diamond chain is consistently manufactured following detailed processes developed by Diamond and proven to produce some of the world's longest running and best performing roller chains.

Each component of a Diamond chain is engineered and produced with optimum performance in mind. Exacting specifications cover critical properties of all component parts and assemblies. Diamond's ISO 9001 certification is proof of the fact that "we say what we do and do what we say."


Nothing outlasts a Diamond®.

CHAIN COMPONENTS

Roller chain is not that hard to understand. It is normally made up of five components:

Collectively, these components produce a series of "traveling bearings." To accomplish this, the chain is assembled with alternate inside and outside links. The inside links that employ bushings and/or rollers are called roller links, and the outside links that employ the pins are called pin links, or connecting links. In operation, the pins articulate inside the bushings leaving the rollers free to turn on the outside of the bushings for "rolling" action as the chain enters and exits the sprocket.

Every Diamond chain is made from the highest quality raw materials available. Starting with the proper raw materials is the foundation of **any** quality product. Diamond pays close attention to chemistry and dimensional specifications which are critical factors as the material is transformed into components capable of handling the toughest job. Producing these components requires painstaking attention to detail and control of fabrication, heat treatment, finishing and assembly processes. Other chain manufacturers may do a good job in some of these areas but at Diamond, we consistently do it better in all.

MANUFACTURING PROCESS

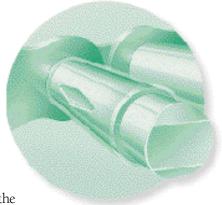
Diamond jewels are sought out because of their enduring perfection. The same argument can be made for a Diamond chain. But, unlike precious gems, Diamond chain is readily available directly from us or your authorized Diamond distributor.

The process of manufacturing the longest lasting chain begins by purchasing the materials to our detailed specifications. This is the way we've always done it because we must specify chemistry, dimensional size and even the direction of the grain in order to fabricate components capable of performing to your expectations.

Transforming these raw materials into individual components that meet our high standards is no easy task. Again, we've learned that attention to detail is a key to achieving the desired result, which is the user's satisfaction. Some of the steps taken to provide this satisfaction are:

Link plate pitch holes are produced using a three-part process to create a polished hole with maximum bearing area and minimal surface imperfection. Maximum bearing area increases chain integrity, and a smooth surface within the pitch hole maximizes the ability to handle heavy loads, especially in fatigue-sensitive applications. Even with the three-part process,

we must spec-


Link Plate Pitch Holes

link plates are left with a small "breakout" area. To minimize the effects of this, Diamond provides a unique identifying feature on our $\frac{3}{4}$ " through $2-\frac{1}{4}$ " pitch, standard and heavy series chains. This identifying feature, a beveled edge, is unique to Diamond, and we use it to orient and assemble the link plates in a direction which minimizes negative effects of the breakout.

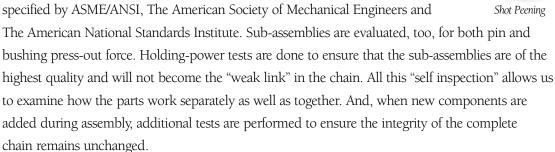
Many years ago, Diamond discovered that forming bushings from strip produced a far superior component, particularly when the chain is operated in an application that is subjected to bushing fatigue.

Bushing Orientation

Diamond also developed processes which orient the chain bushings to position the seam away from the load bearing surface. Positioning the bushings results in a smoother, more uniform bearing surface and helps to reduce chain length variation. In $\frac{1}{4}$ " through $1-\frac{3}{4}$ " pitch chains, our standard bushings are produced using this method.

Diamond provides solid rollers on many "standard" models because a large percentage of roller chain applications transmit higher loads at lower speeds. Under these conditions the integrity of a solid roller is beneficial. There are, of course, exceptions to these standards and depending upon the specific conditions, formed rollers are available either by design or customer request.

To most users, the obvious indication of quality is superior wear life. Poor wear life often leads to regular adjustment or replacement, which reduces productivity and adds cost to an operation. Heat treatment of component parts is an additional procedure to prolong wear life which gives them the ability to perform to their optimum, depending upon what the environment may be. In the vast majority of applications, wear life is critical, so Diamond heat treats those components which control chain elongation very carefully.


Virtually all of our standard pins, bushings and rollers are carburized, or case hardened Pins case hardened. This closely controlled process transforms the outside of the parts into a hard, wear-resistant surface but allows the inner core to remain tough and ductile so as to absorb normal shock loading. In most applications this combination provides the perfect balance between wear resistance and durability.

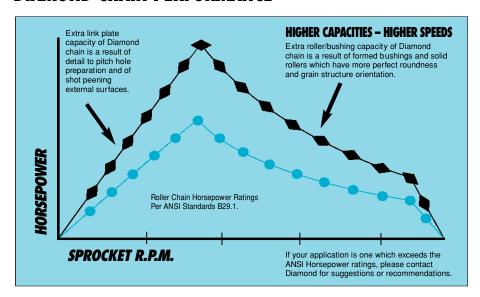
Link plates, on the other hand, are not normally subjected to wear but must be tough to resist the loads, sometimes heavy, to which the chain may be exposed. Their heat treatment is designed to produce tough, ductile and shock-resistant properties, but sometimes heat treatment is not enough. For those sizes that are routinely subjected to heavy or shock loads Diamond further conditions the link plates using a process called "shot peening." In this process, small steel pellets, or shot, are propelled at the link plates. When they strike the surface they leave a tiny indentation which causes the material to work harden. This work hardening creates compressive stresses on the surface of the link plate that allows it to resist, beyond conventional heat treatment, premature fatigue failures.

The attention to detail that goes into the fabrication of component parts is not forgotten when assembly operations begin. During the assembly of every pitch of Diamond chain, four key components (pin, bushing, pin link plates and roller link plates) are examined carefully. These four parts are critical in maintaining chain integrity and controlling chain length. Sections of chain are tensile-tested for conformance to Diamond's specifications which are greater than those

Diamond even identifies our chains with a unique code, we call it a "date stamp," that is applied during assembly. This code gives us information about the components used to produce the chain. This means that Diamond Chain has traceability as to the material used to produce a component, fabricated on a specific piece of machinery, heat treated in a specific furnace and finally, assembled on a specific date. That's a significant feature that other chain manufacturers just don't have.

One might think that assembly is the final step in producing a product, but at Diamond we still have a couple of things left to do. After the chains are assembled, we apply an initial load to the chains, called preload. This loading approximates the recommended loading a chain can expect in service. Preloading is done to align the various chain components such as pins, bushings and link plates. Preloading helps eliminate initial elongation and can increase the usable service life of your chain.

We even subject our own product to performance testing at conditions well beyond recommended limits. Tests on link plate fatigue, roller/bushing fatigue and initial lubrication wear are performed to search out the chain's endurance limits. This "torture testing" allows us to set recommended limits that we can stand behind.



CHAIN PERFORMANCE

You could look at two different brands of roller chain and probably not see a difference on the surface. However, where you will see a difference is in their performance. The working load of a roller chain is often its most important characteristic. Contrary to popular belief, there is no consistent relationship between a roller chain's working load capacity and its ultimate tensile strength. Many times chains are selected on their published tensile strengths, which are breaking loads.

DIAMOND CHAIN PERFORMANCE

Chains must be selected based upon loads that they can transmit repeatedly over millions of cycles. So, chains with equal tensile strengths can, and commonly do, have very different working load capacities. In fact, chains with higher published tensile strengths than Diamond could easily have much lower working load capacities.

WHY USE ROLLER CHAIN?

DURABILITY – Roller chain drives give long service life because the chain load is distributed over several sprocket teeth, keeping bearing pressures relatively low for the power transmitted.

RUGGEDNESS – The proportions, parts heat treatment, and press-fit construction of roller chains help them withstand shock loads and rough drive conditions.

EFFICIENCY – Roller chains transmit power with high efficiency throughout the entire life of the drive. There are no large separating forces, radial loads, thrusts, or bearing pressures to waste power. Therefore, machine frames and bearings may be smaller, lighter and less costly.

VERSATILITY – Drive center distances may be long or short, fixed or adjustable, to suit machine design. Roller chain can transmit power to several shafts from a single drive shaft. Roller chains can engage sprockets on either side and drive sprockets in either direction. Roller chains operate efficiently over a wide speed range in minimum space.

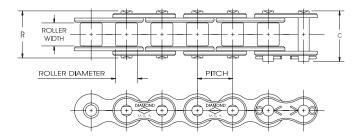
CONVENIENCE – Chain installation requires only the alignment that can be readily obtained with commonly available hand tools. Roller chains can be easily connected and disconnected with standard connecting links. Roller chains can be replaced or maintained without disturbing the sprockets, shafts or bearings.

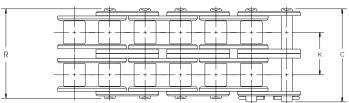
PRECISION – Diamond roller chains are manufactured with great precision. Close control of chain length, roller diameters and other critical dimensions contribute to smooth, quiet action and high efficiency.

A CHAIN IS ONLY WORTH ITS WEAKEST LINK

Let's face it, there are less expensive chains out there, but are they worth it? Probably not in the long run. In most cases, cheap chain doesn't last as long so you have to replace it more often. That means downtime and all of the costs associated with it: idle workers, lost production, repair/replacement costs — it all adds up. Don't be fooled. Initial costs aren't necessarily real costs. Here's an example work sheet that will help you understand the real costs associated with less expensive chain. Please take the time with your Diamond Chain representative or distributor to complete the example using chains and costs that reflect your specific drive conditions. It will clearly illustrate that the investment in Diamond roller chain is definitely worth it when compared to the long-term repair and replacement costs of a less expensive chain.

ANNUAL CHAIN COST ANALYSIS


		BARGAIN CHAIN	DIAMOND CHAIN
A.	Unit cost of new chain (\$/chain-Ft):		
B.	Length required for application (chain-Ft):		
C.	Chain cost per application, A x B (\$/chain):		
D.	Chains used per year (chains/Yr):		
E.	Annual cost of chains, C x D (\$/Yr):		
F.	Chain repairs per year (repairs/Yr):		
G.	Average hours of downtime per repair (downtime-Hrs/repair):		
H.	Costs per downtime-hour, including cost of repair labor, lost efficiency, lost profits, etc. (\$/downtime-Hr):		
l.	Annual downtime costs, $F \times G \times H$ (\$/Yr):		
J.	Total annual costs incurred, E + I (\$/Yr):		


STANDARD SERIES CHAIN

Chain Descriptions and Dimensions

Standard Series Chain

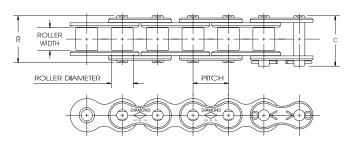
Though it's referred to as standard chain, it's anything but. Our Standard Series chains, built to ASME/ANSI B29.1 standards, are manufactured to very specific requirements. The only thing standard about our chains are their ability to fit many standard applications. From industry to agriculture, our Standard Series chains are designed to last longer than any other manufacturer's roller chain.

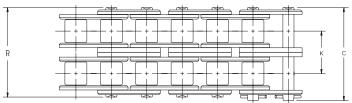
Dimensions in Inches and Pounds

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
25	1/4	1/8	*.130	.090	.030	.37	.34		.084	875
25-2	1/4	1/8	*.130	.090	.030	.63	.59	.252	.163	1750
25-3	1/4	1/8	*.130	.090	.030	.88	.84	.252	.246	2625
35	3/8	³ / ₁₆	*.200	.141	.050	.56	.50		.210	2100
35-2	3/8	3/16	*.200	.141	.050	.96	.90	.399	.450	4200
35-3	3/8	3/16	*.200	.141	.050	1.36	1.31	.399	.680	6300
35-4	³ / ₈	³ / ₁₆	*.200	.141	.050	1.76	1.70	.399	.910	8400
35-5	3/8	³ / ₁₆	*.200	.141	.050	2.16	2.11	.399	1.140	10500
35-6	³ / ₈	³ / ₁₆	*.200	.141	.050	2.57	2.51	.399	1.370	12600
40	1/2	⁵ /16	.312	.156	.060	.72	.67		.410	4000
40-2	1/2	⁵ / ₁₆	.312	.156	.060	1.29	1.24	.566	.800	8000
40-3	1/2	⁵ / ₁₆	.312	.156	.060	1.85	1.80	.566	1.200	12000
40-4	1/2	⁵ / ₁₆	.312	.156	.060	2.42	2.37	.566	1.600	16000
40-6	1/2	⁵ / ₁₆	.312	.156	.060	3.56	3.51	.566	2.420	24000
41	1/2	1/4	.306	.141	.050	.65	.57		.260	2400
50	5/8	3/8	.400	.200	.080	.89	.83		.680	6600
50-2	5/8	3/8	.400	.200	.080	1.60	1.55	.713	1.320	13200
50-3	5/8	3/8	.400	.200	.080	2.31	2.26	.713	1.980	19800
50-4	5/8	3/8	.400	.200	.080	3.03	2.97	.713	2.640	26400
50-5	5/8	3/8	.400	.200	.080	3.75	3.69	.713	3.300	33000
50-6	5/8	3/8	.400	.200	.080	4.46	4.40	.713	3.960	39600
50-8	5/8	3/8	.400	.200	.080	5.89	5.83	.713	5.300	52800
50-10	5/8	3/8	.400	.200	.080	7.32	7.26	.713	6.620	66000
60	3/4	1/2	.469	.234	.094	1.11	1.04		.990	8500
60-2	3/4	1/2	.469	.234	.094	2.01	1.94	.897	1.950	17000
60-3	3/4	1/2	.469	.234	.094	2.91	2.84	.897	2.880	25500
60-4	3/4	1/2	.469	.234	.094	3.81	3.74	.897	3.900	34000
60-5	3/4	1/2	.469	.234	.094	4.71	4.64	.897	4.970	42500
60-6	3/4	1/2	.469	.234	.094	5.60	5.53	.897	5.960	51000
60-8	3/4	1/2	.469	.234	.094	7.40	7.33	.897	7.940	68000
60-10	3/4	1/2	.469	.234	.094	9.19	9.12	.897	9.920	85000

^{*} Chains are rollerless — dimension shown is bushing diameter.

ASME/ANSI 60 and larger chains are available as cottered or riveted type design.


Multiple strand chains are available with slip-fit (standard) or press-fit center plates.

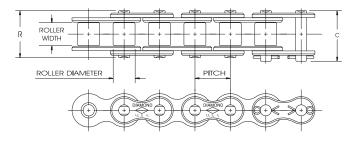

Chart continues on next page.

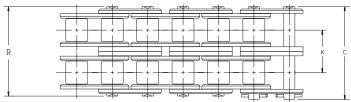
STANDARD SERIES CHAIN

Chain Descriptions and Dimensions

Dimensions in Inches and Pounds

Chart continued from previous page.


Dimensions in Inches and Pounds									Chart continued	from previous page
ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
80	1	5/8	.625	.312	.125	1.44	1.32		1.73	14500
80-2	1	5/8	.625	.312	.125	2.59	2.47	1.153	3.37	29000
80-3	1	5/8	.625	.312	.125	3.74	3.62	1.153	5.02	43500
80-4	1	5/8	.625	.312	.125	4.90	4.79	1.153	6.73	58000
80-5	1	5/8	.625	.312	.125	6.06	5.94	1.153	8.40	72500
80-6	1	5/8	.625	.312	.125	7.22	7.10	1.153	10.07	87000
80-8	1	5/8	.625	.312	.125	9.53	9.40	1.153	13.41	116000
100	1 1/4	3/4	.750	.375	.156	1.73	1.61		2.51	24000
100-2	1 1/4	3/4	.750	.375	.156	3.14	3.02	1.408	4.91	48000
100-3	1 1/4	3/4	.750	.375	.156	4.56	4.43	1.408	7.40	72000
100-4	1 1/4	3/4	.750	.375	.156	5.97	5.84	1.408	9.80	96000
100-5	1 ¹ / ₄	3/4	.750	.375	.156	7.38	7.25	1.408	12.20	120000
100-6	1 ¹ / ₄	3/4	.750	.375	.156	8.78	8.66	1.408	14.60	144000
100-8	1 1/4	3/4	.750	.375	.156	11.60	11.48	1.408	19.40	192000
120	1 1/2	1	.875	.437	.187	2.14	2.00		3.69	34000
120-2	1 1/2	1	.875	.437	.187	3.93	3.79	1.789	7.35	68000
120-3	11/2	1	.875	.437	.187	5.72	5.58	1.789	11.10	102000
120-4	1 ¹ / ₂	1	.875	.437	.187	7.52	7.38	1.789	14.70	136000
120-5	1 1/2	1	.875	.437	.187	9.31	9.17	1.789	18.43	170000
120-6	1 1/2	1	.875	.437	.187	11.10	10.96	1.789	22.11	204000
120-8	1 1/2	1	.875	.437	.187	14.68	14.54	1.789	29.47	272000
120-10	1 1/2	1	.875	.437	.187	18.26	18.12	1.789	36.83	340000
140	13/4	1	1.000	.500	.219	2.31	2.14		5.00	46000
140-2	13/4	1	1.000	.500	.219	4.24	4.07	1.924	9.65	92000
140-3	13/4	1	1.000	.500	.219	6.16	6.00	1.924	14.30	138000
140-4	13/4	1	1.000	.500	.219	8.09	7.93	1.924	18.95	184000
140-6	13/4	1	1.000	.500	.219	11.94	11.78	1.924	28.25	276000
160	2	11/4	1.125	.562	.250	2.73	2.54		6.53	58000
160-2	2	11/4	1.125	.562	.250	5.04	4.85	2.305	12.83	116000
160-3	2	11/4	1.125	.562	.250	7.35	7.16	2.305	19.03	174000
160-4	2	11/4	1.125	.562	.250	9.66	9.47	2.305	25.60	232000
160-6	2	11/4	1.125	.562	.250	14.27	14.09	2.305	37.78	348000
180	21/4	113/32	1.406	.687	.281	3.15	2.88		9.06	76000
180-2	2 1/4 2 1/4	113/32	1.406	.687	.281	5.75	5.48	2.592	17.67	152000
180-2	2 1/4 2 1/4	1 ¹³ / ₃₂	1.406	.687	.281	8.34	8.07	2.592	26.20	228000
200	21/2	11/2	1.562	.781	.312	3.44	3.12		10.65	95000
200-2	2 1/2 2 1/2	1 1/2	1.562	.781	.312	6.26	5.94	2.817	21.50	190000
200-2	2 1/2 2 1/2	1 1/2 1 1/2	1.562	.781	.312 .312	9.08	8.76	2.817	32.30	285000
200-3	2 1/2 2 1/2	1 1/2	1.562	.781	.312	11.90	11.58	2.817	42.90	380000
200-4	2 1/2 2 1/2	1 1/2	1.562			17.52	17.21	2.817	64.50	570000
240		1 '/2 1 ⁷ /8		.781	.312	4.32				157600
	3		1.875	.937	.375		3.83	2.450	17.03	
240-2	3	1 ⁷ / ₈	1.875	.937	.375	7.77	7.27	3.458	33.44	315200
240-3	3	1 ⁷ /8	1.875	.937	.375	11.23	10.73	3.458	49.77	472800


HEAVY SERIES CHAIN

Chain Descriptions and Dimensions

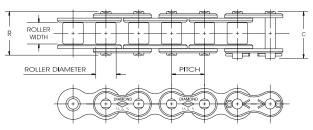
Heavy Series Chain

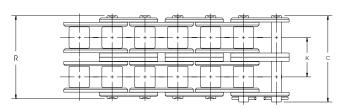
Heavy Series chains, also built in accordance with ASME/ANSI B29.1, are designed using link plate material from the next larger size chain. Heavy Series chains are not necessarily stronger than Standard Series chains, but the thicker link plate material provides an increase in fatigue resistance for those drives subjected to heavy shock loads, multiple stops/starts or reversing.

Dimensions in Inches and Pounds

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	K	Weight Per Foot	Average Tensile Strength
60H	3/4	1/2	.469	.234	.125	1.24	1.17		1.18	8500
60H-2	3/4	1/2	.469	.234	.125	2.27	2.20	1.028	2.33	17000
60H-3	3/4	1/2	.469	.234	.125	3.31	3.24	1.028	3.47	25500
60H-4	3/4	1/2	.469	.234	.125	4.34	4.26	1.028	4.61	34000
80H	1	5/8	.625	.312	.156	1.57	1.45		2.02	14500
80H-2	1	5/8	.625	.312	.156	2.84	2.72	1.283	3.93	29000
80H-3	1	5/8	.625	.312	.156	4.14	4.02	1.283	5.92	43500
80H-4	1	5/8	.625	.312	.156	5.42	5.30	1.283	7.87	58000
100H	1 1/4	3/4	.750	.375	.187	1.86	1.74		2.82	24000
100H-2	1 ¹ / ₄	3/4	.750	.375	.187	3.41	3.28	1.539	5.58	48000
100H-3	1 1/4	3/4	.750	.375	.187	4.95	4.82	1.539	8.32	72000
100H-4	1 ¹ / ₄	3/4	.750	.375	.187	6.49	6.37	1.539	11.04	96000
120H	1 ¹ / ₂	1	.875	.437	.219	2.27	2.13		4.08	34000
120H-2	11/2	1	.875	.437	.219	4.20	4.06	1.924	8.04	68000
120H-3	11/2	1	.875	.437	.219	6.13	5.99	1.924	11.99	102000
120H-4	11/2	1	.875	.437	.219	8.06	7.92	1.924	15.94	136000
120H-6	11/2	1	.875	.437	.219	11.91	11.77	1.924	23.84	204000
140H	1 ³ / ₄	1	1.000	.500	.250	2.44	2.28		5.40	46000
140H-2	13/4	1	1.000	.500	.250	4.50	4.34	2.055	10.65	92000
140H-3	13/4	1	1.000	.500	.250	6.56	6.39	2.055	15.90	138000
140H-4	13/4	1	1.000	.500	.250	8.62	8.45	2.055	21.10	184000
160H	2	11/4	1.125	.562	.281	2.86	2.68		7.03	58000
160H-2	2	11/4	1.125	.562	.281	5.30	5.12	2.436	13.88	116000
160H-3	2	11/4	1.125	.562	.281	7.75	7.56	2.436	20.68	174000
160H-4	2	11/4	1.125	.562	.281	10.17	10.00	2.436	27.62	232000
180H	2 ¹ / ₄	1 ¹³ /32	1.406	.687	.312	3.28	3.01		9.59	76000
180H-2	2 ¹ / ₄	113/32	1.406	.687	.312	6.00	5.73	2.723	18.86	152000
180H-3	21/4	113/32	1.406	.687	.312	8.73	8.46	2.723	28.14	228000
200H	2 ¹ / ₂	11/2	1.562	.781	.375	3.71	3.39		13.38	110000
200H-2	2 ¹ / ₂	11/2	1.562	.781	.375	6.79	6.48	3.083	26.38	220000
200H-3	2 ¹ / ₂	11/2	1.562	.781	.375	9.88	9.56	3.083	40.85	330000
240H	3	17/8	1.875	.937	.500	4.85	4.35		21.08	157600

ASME/ANSI 60 and larger chains are available as cottered or riveted type design. Multiple strand chains are available with slip-fit (standard) or press-fit center plates.


NON-STANDARD SERIES CHAIN


Chain Descriptions and Dimensions

Non-standard Series Chain

Prior to the ASME/ANSI standards, Diamond Chain produced many chains having unique dimensions, often for very specific applications. After industry's adoption of ASME/ANSI standards many of these chains became the current Standard or Heavy Series chains, but some did not. Diamond recognizes that a considerable amount of industrial equipment still utilizes these unique chains and so whenever possible we continue to produce them. The information below may be useful in identifying your "non-standard, but still very important" model.


Dimensions in Inches and Pounds

Diamond Number	Other ID	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
61 x ³ / ₁₆		1	³ / ₁₆	.325	.141	.040	.47	.43		.22	1600
65 x 1/8	BS #4	1/2	1/8	.306	.141	.040	.46	.42		.18	2250
867	BS #7	1/2	⁵ / ₁₆	.335	.174	.060	.73	.68		.43	4200
148 x 1/4	BS #10	5/8	1/4	.400	.200	.080	.73	.67		.59	6600
148 x 5/16		5/8	⁵ / ₁₆	.400	.200	.080	.86	.74		.64	6600
433 x 3/8		3/4	3%	.469	.234	.094	.98	.91		.91	8500
435 x %		1	3%	.562	.281	.125	1.14	1.05		1.11	9000
435 x ½		1	1/2	.562	.281	.125	1.27	1.18		1.21	9000
472		1 ½	3/4	.875	.437	.187	1.86	1.72		3.40	34000
472-2		1 ½	3/4	.875	.437	.187	3.45	3.30	1.55	6.76	68000
472-3		1 ½	3/4	.875	.437	.187	5.00	4.85	1.55	10.08	102000
472-4		1 ½	3/4	.875	.437	.187	6.55	6.41	1.55	13.40	136000
264	64S	2 ½	1½	1.562	.875	.375	3.71	3.39		13.68	148500
264-3	64S-3	2 ½	1½	1.562	.875	.375	9.88	9.56	3.083	40.92	445500

 $61 \times \frac{3}{16}$ uses an alternating pitch of .6 and .4 inches. Consult Diamond for $65 \times \frac{1}{8}$ standard attachment availability.

Link Plate Height

Many times chains are contained within guides or extrusions to protect them from contamination. If this is the case, link plate height can be a critical dimension. The following charts represent nominal pin and roller link plate heights for the models shown. If more detailed information is required please contact Diamond's application engineers.

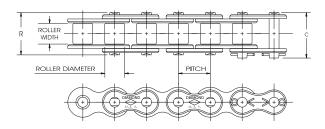
Dimensions in Inches

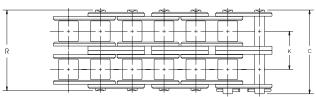
Link Plate		Model Number												
Height*	#25	#35	#40	#41	#50	#60	#80	#100	#120	#140	#160	#180	#200	#240
E	.205	.308	18 .410 .310 .512 .615 .820 1.025 1.230 1.435 1.640 1.845 2.050 2.422											
Н	.238	.356	.475	.383	.594	.713	.950	1.188	1.425	1.663	1.900	2.138	2.375	2.806

^{*} Nominal values are shown. For information on specific models contact Diamond.

Dimensions in Inches

Link Plate		Model Number												
Height*	#60H	#80H	#100H	#120H	#140H	#160H	#180H	#200H	#240H					
E	.615	.820	1.025	1.230	1.435	1.640	1.845	2.050	2.422					
Н	.713	.950	1.188	1.425	1.663	1.900	2.138	2.375	2.806					


^{*} Nominal values are shown. For information on specific models contact Diamond.

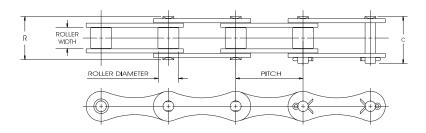

OBSOLETE CHAIN

Chain Descriptions and Dimensions

Obsolete Chain

We have produced several types of chain, and for various reasons some of those chains were determined to be impractical to produce. We regret that all of these chains are no longer in production, but if your chain happens to be one of these, assistance from Diamond's application engineers can often provide a practical replacement chain. The following information is offered for reference only.

Dimensions in Inches and Pounds

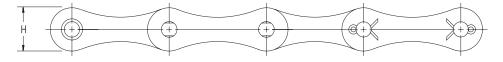

Diamond Number	Other ID	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
88	05B-1	8mm	1/8	.197	.090	.030	.37	.34		.12	1300
61 x ¼		1	1/4	.306	.141	.050	.61	.57		.26	1900
65 x 3/16		1/2	³ ⁄ ₁₆	.306	.141	.040	.47	.43		.21	2250
433 x 5/16		3/4	⁵ ⁄ ₁₆	.469	.234	.094	.92	.85		.85	8500
433 x %		3/4	5%	.469	.234	.094	1.23	1.16		1.09	8500
435 x %		1	5%	.562	.281	.125	1.39	1.30		1.31	9000
434 x ½		1	1/2	.625	.312	.125	1.31	1.19		1.61	14500
431 x ½		1 1/4	1/2	.625	.312	.125	1.31	1.19		1.33	11000
431 x %		1 1/4	5%	.625	.312	.125	1.44	1.32		1.43	11000
437 x ¾		1 ½	3/4	.750	.375	.156	1.73	1.61		2.23	24000

DOUBLE-PITCH POWER TRANSMISSION ROLLER CHAIN

Chain Descriptions and Dimensions

Double-Pitch Power Transmission Roller Chain

These chains, produced to ASME/ANSI B29.3, have figure-eight style link plates. Their dimensions are similar to Standard Series chains with the exception of the pitch, which is twice that of the Standard Series. The increase in pitch means that only half the number of component parts are required per foot which can significantly lower the cost. Typical uses for these types of chains include light load drives commonly found in agriculture.



Dimensions in Inches and Pounds

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Pate Thickness	С	R	Weight Per Foot	Average Tensile Strength
2040	1	⁵ ⁄ ₁₆	.312	.156	.060	.76	.68	.28	3700
2050	11/4	3/8	.400	.200	.080	.92	.84	.52	6100
2060	1½	1/2	.469	.234	.094	1.11	1.05	.72	8500
2080	2	5/8	.625	.312	.125	1.44	1.32	1.13	14500

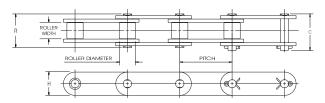
Link Plate Height

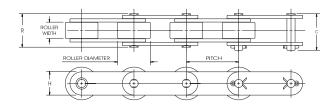
Many times chains are contained within guides or extrusions to protect them from contamination. If this is the case, link plate height can be a critical dimension. The following represent nominal pin and roller link plate heights for the models shown. If more detailed information is required please contact Diamond's application engineers.

Dimensions in Inches

Link Plate	Model Number								
Height*	2040 2050 2060 2080								
Н	.475	.594	.712	.950					

^{*} Nominal values are shown. For information on specific models contact Diamond.


DOUBLE-PITCH CONVEYOR ROLLER CHAIN



Chain Descriptions and Dimensions

Double-Pitch Conveyor Roller Chain

Produced to ASME/ANSI B29.4, these chains are used in conveyor applications when loads are low and speeds are moderate. They are similar to the Double-Pitch Power Transmission chains, but with link plates that have an oval contour, and can be produced with either standard or over-sized rollers. They are most often found working on conveyors of all shapes and sizes and can be supplied with one or more of our many attachments to carry or convey products.

Dimensions in Inches and Pounds

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
C-2040	1	5/16	.312	.156	.060	.76	.68	.34	3700
C-2050	11/4	3/8	.400	.200	.080	.92	.84	.58	6100
C-2060H	1½	1/2	.469	.234	.125	1.25	1.18	1.05	8500
C-2080H	2	5/8	.625	.312	.156	1.57	1.45	1.40	14500
C-2100H	21/2	3/4	.750	.375	.187	1.86	1.74	2.48	24000
C-2120H	3	1	.875	.437	.219	2.27	2.13	3.60	34000
C-2160H	4	1¼	1.125	.562	.281	2.86	2.68	6.18	58000

Dimensions in Inches and Pounds

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
C-2042	1	⁵ / ₁₆	.625	.156	.060	.76	.68	.50	3700
C-2052	1 ¹ / ₄	3/8	.750	.200	.080	.92	.84	.81	6100
C-2062H	11/2	1/2	.875	.234	.125	1.25	1.18	1.42	8500
C-2082H	2	5/8	1.125	.312	.156	1.57	1.45	2.13	14500
C-2102H	2 ¹ / ₂	3/4	1.562	.375	.187	1.86	1.74	3.51	24000
C-2122H	3	1	1.750	.437	.219	2.27	2.13	5.48	34000
C-2162H	4	1 ¹ /4	2.250	.562	.281	2.86	2.68	9.34	58000

Link Plate Height

Many times chains are contained within guides or extrusions to protect them from contamination. If this is the case, link plate height can be a critical dimension. The following represent nominal pin and roller link plate heights for the models shown. If more detailed information is required please contact Diamond's application engineers.

Dimensions in Inches

Link				Model Number			
Plate Height*	C2040	C2050	C2060H C2062H	C2080H C2082H	C2100H C2102H	C2120H C2122H	C2160H C2162H
Н	.475	.594	.712	.950	1.187	1.425	1.900

^{*} Nominal values are shown. For information on specific models contact Diamond.

STANDARD ATTACHMENT ROLLER CHAIN

Chain Descriptions and Dimensions

Standard Attachment Roller Chain

Single- and Double-Pitch chains are available assembled with either attachment link plates or extended pins. While most carbon steel attachment chains fall within Diamond's **Attachment Chain Program** and ship in **48 hours** (for quantities up to 100 feet) in 3-5 working days (for quantities of 101 to 300 feet) or in 5-7 working days (for quantities of 301 to 500 feet), stainless steel, nickel-plated and ACE coated attachment chains also get special attention through Diamond's **5-day** shipping program. These attachments' shapes and sizes are "standard" their uses are limited only by your imagination. Now the chain that lasts the longest, arrives the fastest because from the minute you place your order, we have from **48 hours to 5 days** to get it out the door. That way you don't wait -- wasting countless dollars in downtime.

When designing or specifying attachment chains, consider the following information to avoid problems with either installation or performance.

Standard Attachments: Standard attachments described on the following pages are normally much less expensive than special designs. However, if a specialty attachment is necessary please refer to the Made-To-Order section of this guide or contact Diamond's application engineers for possible design options.

Link Plate Location: Attachments, regardless of standard or special design, assembled on pin links are less expensive than those assembled on roller links.

Modifications: Diamond's attachment link plates are specifically designed and heat treated to permit further operations by the user such as drilling, reaming, and tapping if desired. At no time should attachment links be modified by welding because the heat applied can adversely affect the heat treatment of the steel, resulting in either reduced performance or failure.

Extended Pins: Extended pins, made from medium carbon steel, are specially heat treated for ductility and toughness and can be easily assembled at virtually any spacing. It is important to note that if pairs of extended pins are specified, they must be located in a common pin link. In some applications this may require the use of an offset in the cycle.

Diamond does not recommend using "shouldered pins." They are generally expensive to manufacture and can often compromise quality due to high stress concentrations at the point where diameters change. Additions of sleeves or bearings on the extended pins will often yield a more dependable design and at a lower cost.

Attachment Hole Sizes: Diamond's standard attachment hole sizes are designed to accommodate the most common screw sizes. If your application requires a different attachment hole size, than shown in this section, please contact Diamond, as many alternate lug holes are available and may be available from stock.

Dimensions in Inches

Chain Size	Hole Diameter	Screw Size	Screw Diameter
25	.125	#3	.099
35	.102	#2	.086
40	.141	#5	.125
41	.141	#5	.125
50	.203	#10	.190
60	.203	#10	.190
80	.266	1/4	.250
100	.343	⁵ ∕ ₁₆	.312
120	.386	3/8	.375
140	.448	⁷ / ₁₆	.438
160	.516	1/2	.500

Dimensions in Inches

Chain Size	Hole Diameter*	Screw Size	Screw Diameter
C2040	.141	# 5	.125
C2050	.203	#10	.190
C2060H	.203	#10	.190
C2080H	.266	1/4	.250
C2100H	.328	⁵ ⁄ ₁₆	.312
C2120H	.391	3/8	.375
C2160H	.516	1/2	.500

*Straight, one hole attachments have larger diameters than shown. Refer to Double-Pitch Straight and Bent Attachment tables for more detail.

STANDARD ATTACHMENT ROLLER CHAIN

Chain Descriptions and Dimensions

Assembly: While it is possible to purchase base chain or attachment components and construct an attachment chain, it is strongly recommended that chains be ordered and assembled at the factory to ensure the proper fit and alignment of all parts along with any length or matching requirements.

Manufacturing Length Tolerance: ASME/ANSI defines the permissible length of an assembled section of roller chain. The allowable length tolerances vary from model to model and are also affected by the chain's construction, i.e., with or without attachments.

As an example, the assembled length tolerance for an ASME/ANSI one inch pitch chain (#80) is +.016"/-.000" per foot. When attachments are added to the chain's design, the tolerance for length expands to +.032"/-.000" per foot. This means that a section of #80 chain 12 pitches long (12" nominal) can measure as long as 12.016" but *no less than* 12.000". The same section of chain assembled with bent, straight, or extended pin attachments could measure as long as 12.032" but again, *no less than* 12.000".

In common practice, manufacturers strive to produce chain nearer to the nominal figure, but the maximum allowable length tolerance should always be considered when designing for take-ups and catenary chain sag. If the application requires it, some design and assembly steps can be taken to direct the length of the chain toward the nominal. However, on a routine basis machine designs based on a nominal or specified chain length should be avoided.

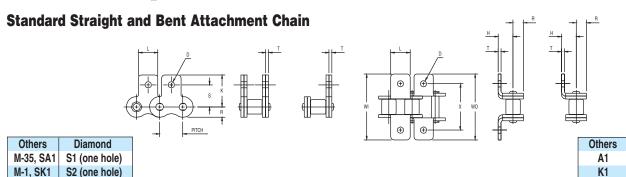
Length Matching of Roller Chains: Many applications require two or more chains, normally with attachments, to run in parallel with "flights" joining the chains together forming a conveyor or transfer type system. In these cases it is critical to have the chains ordered as a set, matched for length and installed on the machinery with the same relationship to one another as when they were manufactured.

Diamond offers two degrees of matching for parallel operation: Class I and Class II.

Class I - A Class I match assures that the longest and the shortest chain in a given set will not vary in overall length by more than .006"/ft. Again using #80 chain as an example, the length of two #80 chains 120 pitches long will not vary by more than .060" in overall length (10ft. x .006"/ft. = .060"). The shortest could measure 120" + .000" (remember, no negative tolerance) and the longest could measure up to 120" + .060" and satisfy the Class I requirement. Class I matching is most often accomplished by assembling the chains from selected lots of component parts.

Class II - A Class II match is much more stringent and assures that the longest and the shortest chain in a given set will not vary in overall length by more than .002"/ft. Applying this new tolerance to the above example, the length of two #80 chains 120 pitches long will not vary by more than .020" in overall length (10ft. \times .002"/ft. = .020"). The shortest could measure 120" + .000" and the longest could measure 120" + .020" and satisfy the requirement. Class II matching is quite difficult and requires some very unique procedures.

Differences - It is important to remember that matched chains still fall under the overall length limitations imposed by either ASME/ANSI or the manufacturer. Matching **does not** assure the user of chains with a finite overall length, only that the chains in the set have a controlled relationship to one another.


Diamond

B1 (one hole)

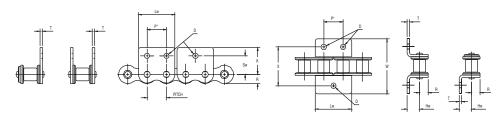
B2 (one hole)

STANDARD ATTACHMENT **ROLLER CHAIN**

Chain Descriptions and Dimensions

Dimensions	in	Inches
Dimensions	m	inches

ASME/ANSI Number	Pitch Inches	D	н	К	L	R Max.	S	т	WI	wo	Х
25	.250	.125	.180	.451	.218	.119	.308	.030	.781	.843	.562
35	.375	.102	.250	.577	.312	.178	.387	.050	1.125	1.125	.750
40	.500	.141	.312	.684	.375	.238	.489	.060	1.390	1.390	1.000
41	.500	.141	.282	.698	.375	.192	.482	.050	1.375	1.375	.937
50	.625	.203	.406	.895	.500	.297	.618	.080	1.812	1.812	1.250
60	.750	.203	.478	1.038	.625	.356	.716	.094	2.135	2.135	1.500
80	1.000	.266	.625	1.339	.750	.475	.968	.125	2.750	2.750	2.000
100	1.250	.343	.784	1.696	1.000	.594	1.233	.156	3.077	3.406	2.500
120	1.500	.386	.917	2.024	1.125	.713	1.424	.187	3.841	4.239	2.995
140	1.750	.448	1.127	2.445	1.375	.831	1.750	.220	4.361	4.826	3.500
160	2.000	.516	1.250	2.756	1.500	.950	2.007	.250	5.078	5.609	4.000


Above attachments available for multiple strand chain.

Diamond

Wide Contour Straight and Bent Attachment Chain

Others

Diamond

	/CS1 (one hole) /CS1 (two holes)	WM-1 WM-2	,	one hole) wo holes)			WA-1 WA-2, A	WCB1 (one 2 WCB1 (two	,	WK-1 WK-2, K2		2 (one hole) 2 (two holes)
	Dimensions in Inches											
ASME/ANSI Number	Pitch Inches	D	Hw	К	Lw	Р	R Max.	Sw	Т	W		Х
*35	.375	.125	.262	.577	.727	.375	.178	.399	.050	1.105	5	.750
*40	.500	.141	.326	.684	.946	.500	.238	.503	.060	1.366	6	1.000
*41	.500	.141	.282	.698	.878	.500	.192	.482	.050	1.372	2	.937
*50	.625	.203	.406	.895	1.211	.625	.297	.618	.080	1.807	7	1.250
*60	.750	.203	.478	1.038	1.420	.750	.356	.716	.094	2.135	5	1.500
*80	1.000	.266	.625	1.339	1.885	1.000	.475	.967	.125	2.750)	2.000
*†100	1.250	.343	.784	1.696	2.362	1.250	.594	1.233	.156	3.408	3	2.500
*†120	1.500	.386	.917	2.023	2.836	1.500	.713	1.424	.187	4.239)	2.995

Attachment available on pin link plate only. These items not available with 48-hour delivery.

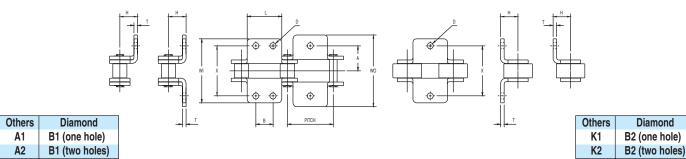
Others

Diamond

Others

Diamond

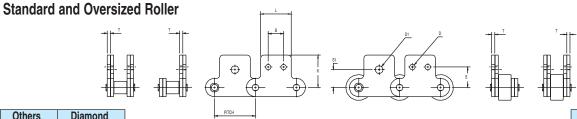
Others


STANDARD ATTACHMENT ROLLER CHAIN

Chain Descriptions and Dimensions

Double-Pitch Bent Attachments

Oval Contour Link Plates Standard and Oversized Roller



Dimensions in Inches

Standard ASME/ANSI#	Roller Roller Diam.	Pitch Inches	A	В	D	н	L	Т	WI	wo	х	Large ASME/ANSI #	Roller Diam.
*C2040	.312	1.00	.500	.375	.141	.359	.750	.060	1.350	1.483	1.000	C-2042	.625
*C2050	.400	1.25	.625	.469	.203	.453	.937	.080	1.692	1.863	1.250	C-2052	.750
*C2060H	.469	1.50	.844	.562	.203	.578	1.125	.125	2.171	2.446	1.688	C-2062H	.875
*C2080H	.625	2.00	1.094	.750	.266	.766	1.500	.156	2.792	3.125	2.188	C-2082H	1.125
*C2100H	.750	2.50	1.312	.937	.328	.922	1.875	.187	3.554	3.951	2.625	C-2102H	1.562
*C2120H	.875	3.00	1.562	1.125	.391	1.095	2.250	.219	4.318	4.782	3.125	C-2122H	1.750
*C2160H	1.125	4.00	2.063	1.500	.516	1.438	3.000	.281	5.520	6.116	4.125	C-2162H	2.250

^{*}Two attachment holes stock.
One attachment hole made-to-order.

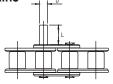
Others	Diamond					
	S1 (one hole)					
M-35-2, SA2	S1 (two holes)					

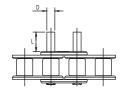
Others	Diamond					
M-1, SK1	S2 (one hole)					
M-2, SK2	S2 (two holes)					

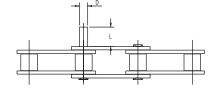
Dimensions in Inches

Standa	rd Roller		With Two* Attachment Holes							h One ent Hole	Large	Roller
ASME/ ANSI #	Roller Diam.	Pitch Inches	В	D	S	K	L	т	D1	S 1	ASME/ ANSI #	Roller Diam.
*C2040	.312	1.00	.375	.141	.531	.773	.750	.060	.188	.438	C-2042	.625
*C2050	.400	1.25	.469	.203	.625	.971	.937	.080	.250	.563	C-2052	.750
*C2060H	.469	1.50	.562	.203	.750	1.203	1.125	.125	.329	.688	C-2062H	.875
*C2080H	.625	2.00	.750	.266	1.000	1.590	1.500	.156	.375	.875	C-2082H	1.125
*C2100H	.750	2.50	.937	.328	1.250	1.982	1.875	.187	.516	1.125	C-2102H	1.562
*C2120H	.875	3.00	1.125	.391	1.469	2.367	2.250	.219	.563	1.312	C-2122H	1.750
*C2160H	1.125	4.00	1.500	.516	2.000	3.090	3.000	.281	.750	1.750	C-2162H	2.250

^{*}Two attachment holes stock.
One attachment hole made-to-order.


STANDARD ATTACHMENT ROLLER CHAIN


Chain Descriptions and Dimensions


Standard Extended Pins

For ASME/ANSI Standard Series Chains

Double-Pitch Conveyor Chains

Others	Diamond
D1	E1 (one extended pin)
D3	E2 (two extended pins)

Dimensions in Inches

ASME/ ANSI#	Pitch Inches	D±.0005"	L±.010"	ASME ANSI #	Pitch Inches	D±.0005"	L±.010"
35	.375	.141	.375	80	1.00	.312	.750
40	.500	.156	.383	100	1.25	.375	.937
41	.500	.141	.375	120	1.50	.437	1.125
50	.625	.200	.468	140	1.75	.500	1.312
60	.750	.234	.562	160	2.00	.562	1.500

ASME/ANSI #	Pitch Inches	D±.0005"	L±.010"
C-2040, C-2042	1.00	.156	.375
C-2050, C-2052	1.25	.200	.468
C-2060H, C-2062H	1.50	.234	.562
C-2080H, C-2082H	2.00	.312	.750
C-2100H, C-2102H	2.50	.375	.937
C-2120H, C-2122H	3.00	.437	1.125
C-2160H, C-2162H	4.00	.562	1.500

Standard Attachment Terminology	Other Manufacturers	Diamond Terminology	Description
Single- and Double-Pitch Lugs	A1 A2 K1 K2 SA1, M-35 SA2, M-35-2 SK1, M-1 SK2, M-2	B1 one hole B1 two holes B2 one hole B2 two holes S1 one hole S1 two holes S2 one hole S2 two holes	Bent attachment, one side, one hole Bent attachment, one side, two holes Bent attachment, both sides, one hole Bent attachment, both sides, two holes Straight attachment, one side, one hole Straight attachment, one side, two holes Straight attachment, both sides, one hole Straight attachment, both sides, two holes
Wide Contour Lugs	WM-35 WM-35-2 WM-1 WM-2 WA-1 WA-2, A2 WK-1 WK-2, K2	WCS1 one hole WCS1 two holes WCS2 one hole WCS2 two holes WCB1 one hole WCB1 two holes WCB2 one hole WCB2 two holes	Wide contour, straight attachment, one side, one hole Wide contour, straight attachment, one side, two holes Wide contour, straight attachment, both sides, one hole Wide contour, straight attachment, both sides, two holes Wide contour, bent attachment, one side, one hole Wide contour, bent attachment, one side, two holes Wide contour, bent attachment, both sides, one hole Wide contour, bent attachment, both sides, two holes
Extended Pins	D1 D3	E1 E2	One pin in link extended Both pins in link extended

Chain Descriptions and Dimensions

Diamond Multiple Strand Roller Chain

When the loads or speeds are too great for a single strand chain to carry, multiple strand roller chain, which is the equivalent of two or more single strand chains assembled with common pins, can often provide the necessary capacity. These chains are manufactured in several widths, depending upon the specific model, up to twelve strands wide. Diamond's multiple strand chains are available with two types of construction – with center plates slip-fit on the pins or with center plates press-fit on the pins.

Slip-fit center plate: Slip-fit center plate multiple strand chains have been used for decades and are most suitable for drives of moderate severity. These chains are designed for ease of disassembly throughout the entire length of chain. The chains can be shortened or sections can be added quickly with minimal effort. However, with the slip-fit design, the user may experience accelerated fatigue failures in exchange for the ease of alteration in the field.

Press-fit center plate: Press-fit multiple strand chains were originally developed by Diamond for service in applications that require the utmost in multiple strand chain capacity. Multiple strand chains with press-fit center plates have significantly greater fatigue strength than their slip-fit center plate counterparts, because press-fit construction assures rigid, permanent support for the pins at each tension point with no relative movement, which can cause wear or fatigue.

The superiority of press-fit center plate chain over the slip-fit center plate chain has been proven many, many times in actual service where the drive conditions are severe. The extreme durability and ruggedness of Diamond multiple strand roller chains are exemplified by their wide acceptance for use on such heavy-duty equipment as power shovels, diesel engines, and oil drilling and pumping units.

While the press-fit construction does provide the increased fatigue resistance that is essential in many applications, the user does give up some convenience because the chain's length is not readily shortened in the field. For this reason press-fit center plate chains should always be ordered in the exact pitch length required, including a Bushed Center Plate Link (BCL) connecting link.

Chain Descriptions and Dimensions

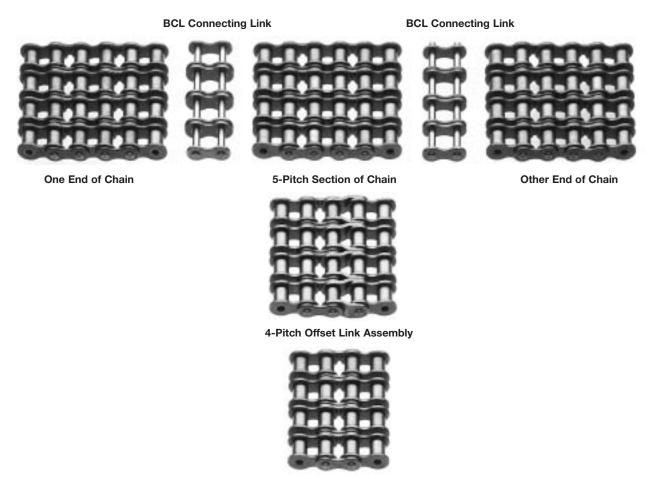
Bushed Center Plate Links (BCL): With the development of the BCL connecting link for press-fit center plate chains almost fifty years ago, Diamond made a significant engineering advance. These links have virtually the same superior durability and high resistance to fatigue found only in press-fit center plate chain, yet they are as easily installed and removed as slip-fit center plate type connecting links.

The BCL connecting link is constructed using center plate assemblies, consisting of two center plates securely held together with two press-fit bushings. These bushings, hardened to resist wear, have inside diameters precision ground after assembly into the center plates. The grinding tolerances are extremely close with respect to both the pitch dimension and hole size to assure a close sliding-fit on the chain pins.

These features reduce to a minimum the possibility of any relative motion between pins and bushings and assures equal distribution of chain-load across pins throughout the service-life of the chain.

Diamond BCL connecting links are available for $\frac{5}{8}$ " through $2-\frac{1}{2}$ " pitch Standard Series, press-fit center plate multiple-strand chain.

The cost of manufacturing BCL connecting links is unavoidably higher than that of slip-fit center plate links, but the greater durability and high resistance to fatigue more than warrants the additional cost.



Bushed Center Plate Assembly

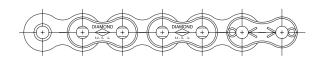
Four-Pitch Press-Fit Offset Link Assembly: Pins are press-fit in offset link pitch holes. Four-pitch length permits the use of BCL connecting links on either end, giving maximum capacity of chain assembly.

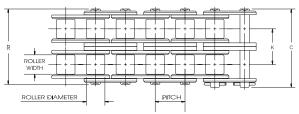
Chain Descriptions and Dimensions

3-Pitch Section of Chain

When the ability to shorten press-fit center plate multiple strand chain is a requirement, it is recommended that the original chain be ordered to the exact length needed in pitches including two connecting links of the BCL type, with a **five-pitch section of the chain** between the two.

When the chain has elongated through normal wear the equivalent of one pitch, the five-pitch section of chain should be replaced by a four-pitch offset link assembly, which has press-fit link plates throughout, providing maximum structural rigidity.


When subsequent wear-elongation is sufficient to allow the removal of another pitch of chain, the **four-pitch offset link assembly should be replaced by a three-pitch section** of press-fit center plate chain.

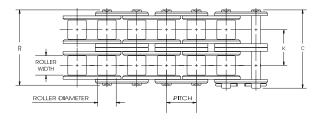

Similarly, should a drive on fixed centers require an odd number of pitches in the original chain length, the chain should be specified to include a **four-pitch offset link assembly** between two BCL connecting links. To shorten the chain by the equivalent of one pitch, the **four-pitch offset link assembly should be replaced with a three-pitch section** of press-fit center plate chain.

In general, the use of offset links in any chain design should be avoided whenever possible due to the decreased load carrying ability of the offset. However, if an offset must be employed, the use of a two- or four-pitch offset link assembly in multiple strand chains, especially press-fit center plate chain, is preferred over one-pitch offset links. Single-pitch offsets do not provide the desirable structural rigidity found in the two- and four-pitch assemblies.

Chain Descriptions and Dimensions

Dimensions in Inches and Pounds

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
25-2	1/4	1/8	*.130	.090	.030	.63	.59	.252	.163	1750
25-3	1/4	1/8	*.130	.090	.030	.88	.84	.252	.246	2625
35-2	3/8	3/16	*.200	.141	.050	.96	.90	.399	.450	4200
35-3	3/8	3/16	*.200	.141	.050	1.36	1.31	.399	.680	6300
35-4	3/8	3/16	*.200	.141	.050	1.76	1.70	.399	.910	8400
35-5	3/8	3/16	*.200	.141	.050	2.16	2.11	.399	1.140	10500
35-6	3%	3/16	*.200	.141	.050	2.57	2.51	.399	1.370	12600
40-2	1/2	5/16	.312	.156	.060	1.29	1.24	.566	.800	8000
40-3	1/2	5/16	.312	.156	.060	1.85	1.80	.566	1.200	12000
40-4	1/2	5/16	.312	.156	.060	2.42	2.37	.566	1.600	16000
40-6	1/2	⁵ ⁄ ₁₆	.312	.156	.060	3.56	3.51	.566	2.420	24000
50-2	5%	3/8	.400	.200	.080	1.60	1.55	.713	1.320	13200
50-3	5%	3/8	.400	.200	.080	2.31	2.26	.713	1.980	19800
50-4	5/8	3/8	.400	.200	.080	3.03	2.97	.713	2.640	26400
50-5	5/8	3/8	.400	.200	.080	3.75	3.69	.713	3.300	33000
50-6	5/8	3/8	.400	.200	.080	4.46	4.40	.713	3.960	39600
50-8	5/8	3/8	.400	.200	.080	5.89	5.83	.713	5.300	52800
50-10	5/8	3/8	.400	.200	.080	7.32	7.26	.713	6.620	66000
60-2	3/4	1/2	.469	.234	.094	2.01	1.94	.897	1.950	17000
60-3	3/4	1/2	.469	.234	.094	2.91	2.84	.897	2.880	25500
60-4	3/4	1/2	.469	.234	.094	3.81	3.74	.897	3.900	34000
60-5	3/4	1/2	.469	.234	.094	4.71	4.64	.897	4.970	42500
60-6	3/4	1/2	.469	.234	.094	5.60	5.53	.897	5.960	51000
60-8	3/4	1/2	.469	.234	.094	7.40	7.33	.897	7.940	68000
60-10	3/4	1/2	.469	.234	.094	9.19	9.12	.897	9.920	85000
80-2	1	5/8	.625	.312	.125	2.59	2.47	1.153	3.370	29000
80-3	1	5/8	.625	.312	.125	3.74	3.62	1.153	5.020	43500
80-4	1	5/8	.625	.312	.125	4.90	4.79	1.153	6.730	58000
80-5	1	5/8	.625	.312	.125	6.06	5.94	1.153	8.400	72500
80-6	1	5/8	.625	.312	.125	7.22	7.10	1.153	10.070	87000
80-8	1	5/8	.625	.312	.125	9.53	9.40	1.153	13.410	116000
100-2	11/4	3/4	.750	.375	.156	3.14	3.02	1.408	4.910	48000
100-3	11/4	3/4	.750	.375	.156	4.56	4.43	1.408	7.400	72000
100-4	11/4	3/4	.750	.375	.156	5.97	5.84	1.408	9.800	96000
100-5	11/4	3/4	.750	.375	.156	7.38	7.25	1.408	12.200	120000
100-6	11/4	3/4	.750	.375	.156	8.78	8.66	1.408	14.600	144000
100-8	11/4	3/4	.750	.375	.156	11.60	11.48	1.408	19.400	192000
120-2	1½	1	.875	.437	.187	3.93	3.79	1.789	7.350	68000
120-3	1½	1	.875	.437	.187	5.72	5.58	1.789	11.100	102000
120-4	1½	1	.875	.437	.187	7.52	7.38	1.789	14.700	136000
120-5	1½	1	.875	.437	.187	9.31	9.17	1.789	18.430	170000
120-6	1½	1	.875	.437	.187	11.10	10.96	1.789	22.110	204000
120-8	1½	1	.875	.437	.187	14.68	14.54	1.789	29.470	272000
120-10	1½	1	.875	.437	.187	18.26	18.12	1.789	36.830	340000


^{*} Chains are rollerless — dimension shown is bushing diameter.

ASME/ANSI 60 and larger chains are available as cottered or riveted type design.

Multiple strand chains are available with slip-fit (standard) or press-fit center plates.

Chain Descriptions and Dimensions

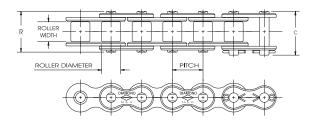
Dimensions in Inches and Pounds

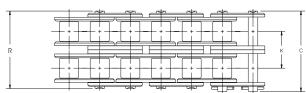
Chart continued from previous page.

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
140-2	13/4	1	1.000	.500	.219	4.24	4.07	1.924	9.65	92000
140-3	1¾	1	1.000	.500	.219	6.16	6.00	1.924	14.30	138000
140-4	1¾	1	1.000	.500	.219	8.09	7.93	1.924	18.95	184000
140-6	1¾	1	1.000	.500	.219	11.94	11.78	1.924	28.25	276000
160-2	2	11/4	1.125	.562	.250	5.04	4.85	2.305	12.83	116000
160-3	2	11/4	1.125	.562	.250	7.35	7.16	2.305	19.03	174000
160-4	2	11/4	1.125	.562	.250	9.66	9.47	2.305	25.60	232000
160-6	2	11/4	1.125	.562	.250	14.27	14.09	2.305	37.78	348000
180-2	21/4	113/32	1.406	.687	.281	5.75	5.48	2.592	17.67	152000
180-3	21/4	113/32	1.406	.687	.281	8.34	8.07	2.592	26.20	228000
200-2	21/2	1½	1.562	.781	.312	6.26	5.94	2.817	21.50	190000
200-3	21/2	1½	1.562	.781	.312	9.08	8.76	2.817	32.30	285000
200-4	21/2	1½	1.562	.781	.312	11.90	11.58	2.817	42.90	380000
200-6	21/2	1½	1.562	.781	.312	17.52	17.21	2.817	64.50	570000
240-2	3	17//8	1.875	.937	.375	7.77	7.27	3.458	33.44	315200
240-3	3	17//8	1.875	.937	.375	11.23	10.73	3.458	49.77	472800

ASME/ANSI 60 and larger chains are available as cottered or riveted type design. Multiple strand chains are available with slip-fit (standard) or press-fit center plates.

HIGH STRENGTH/LIFT CHAIN

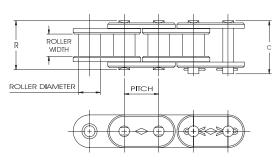

Chain Descriptions and Dimensions


Produced in accordance with ASME/ANSI B29.1, these chains are designed for the rigors of heavy loads and lifting. Depending on your specific application, Diamond offers three options from which to choose.

High Strength (HS) Drive Chains

HS Series Drive chains are built in accordance with ASME/ANSI B29.1 and are dimensionally identical to Heavy Series Drive chains, but are specially designed and incorporate pins produced from medium carbon alloy steel. These pins are through-hardened to give the chain a higher working load capacity and additional resistance to fatigue in high load and pulsating type applications. Users of these chains should remember that wear life may be slightly reduced due to the material and heat treatment of the chain pins. Slip-fit type connecting links and offset links are not available for these chains.

Note: Offset links and slip-fit connecting links are not recommended for any High Strength or Lift Chain.



Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
60HS	3/4	1/2	.469	.234	.125	1.24	1.17	1.18	12000
80HS	1	5%	.625	.312	.156	1.57	1.45	2.02	21000
100HS	11/4	3/4	.750	.375	.187	1.86	1.74	2.82	30000
120HS	1½	1	.875	.437	.219	2.27	2.13	4.08	41000
140HS	1¾	1	1.000	.500	.250	2.44	2.28	5.40	56000
160HS	2	11/4	1.125	.562	.281	2.86	2.68	7.03	70000
180HS	21/4	1 ¹³ / ₃₂	1.406	.687	.312	3.28	3.01	9.59	95000
200HS	21/2	1½	1.562	.781	.375	3.71	3.39	13.75	136000
200HS-2	2 ½	1½	1.562	.781	.375	6.79	6.48	26.38	270000
200HS-3	21/2	1½	1.562	.781	.375	9.88	9.56	40.85	405000
240HS	3	17/8	1.875	.937	.500	4.85	4.35	21.08	157600

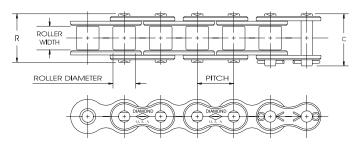
For the ultimate in Diamond Chain High Strength performance, consider Diamond HS Oval Contour chains. Specially designed with pins produced from medium carbon alloy steel and FULL Oval Contour pin and roller link plates, providing the maximum link plate rigidity for high load fatigue applications.

Note: Offset links and slip-fit connecting links are not recommended for any High Strength or Lift Chain.

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
60HSOC	3/4	1/2	.469	.234	.125	1.24	1.17	1.42	12000
80HSOC	1	5/8	.625	.312	.156	1.57	1.45	2.38	21000
100HSOC	11/4	3/4	.750	.375	.187	1.86	1.74	3.29	30000

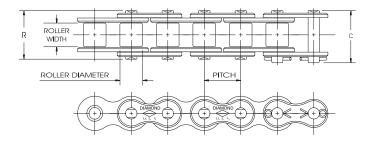
HIGH STRENGTH/LIFT CHAIN


Chain Descriptions and Dimensions

Hoist Chain

These chains are built in accordance with ASME/ANSI B29.24 and are dimensionally identical to Standard Series Drive chains, but also incorporate pins produced from medium carbon alloy steel, through-hardened, to give the chains higher working load capacity and additional resistance to fatigue. Additionally, these chains are produced with solid rollers for increased performance when loading is high, but speeds are slow. Users of these chains should be aware that wear life may be slightly reduced due to the material and heat treatment of the chain pins.

Note: Slip-fit type connecting links and offset links are not available for these chains.


Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
625	5/8	3/8	.400	.200	.080	.89	.83	.68	8000
750	3/4	1/2	.469	.234	.094	1.11	1.04	.99	10500

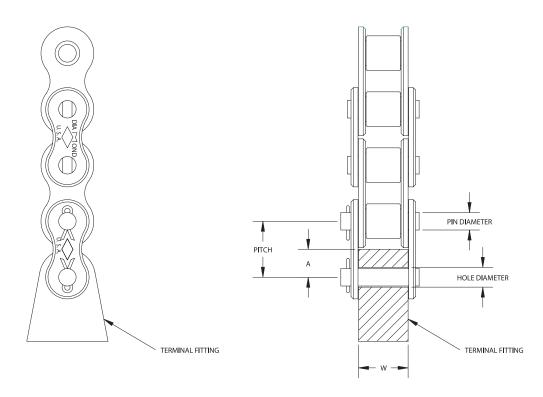
Rollerless Lift Chain

These chains are specifically designed for tension linkages where frequent articulation requires the increased bearing area of a roller chain. Rollerless Lift chains are dimensionally identical to Standard Series Drive chains but are produced without rollers.

Note: Slip-fit type connecting links and offset links are not available for these chains.

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
55S	5/8	3/8	*.280	.200	.080	.89	.83	.55	†8000
65S	3/4	1/2	*.332	.234	.094	1.11	1.04	.81	†10500
85	1	5/8	*.442	.312	.125	1.44	1.32	1.41	14500
105	1 ¹ / ₄	3/4	*.532	.375	.156	1.73	1.61	2.08	24000
125	11/2	1	*.620	.437	.187	2.14	2.00	3.04	34000


^{*} Chains are rollerless — dimension shown is bushing diameter. † Numbers 55S and 65S are assembled with medium carbon through-hardened pins

HIGH STRENGTH/LIFT CHAIN

Chain Descriptions and Dimensions

Terminal Fittings

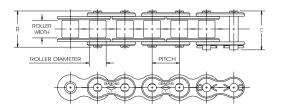
Diamond does not provide terminal fittings. We recommend that fittings be made of through-hardened steel, heat treated to RC 40-45. They should be machined accurately to ensure proper mating with chain link plates and to provide uniform loading across the width of the chain. Chains should always be attached to the terminal fittings using a press-fit style connecting link. Terminal fittings should be inspected regularly and the above conditions maintained. Worn, damaged or corroded chains and/or terminal fittings can lead to chain failure which may result in either personal injury or property damage.

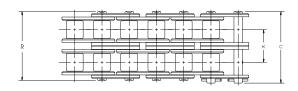
Dimensions in Inches

Diamond Number	Pitch Inches	W +.000031	Pin Diameter	Hole Diameter	A (max.)
60 H or HS	3/4	.764	.234	.237	.375
80 H or HS	1	.955	.312	.315	.500
100 H or HS	1¼	1.141	.375	.378	.625
120 H or HS	1½	1.458	.437	.440	.750
140 H or HS	13/4	1.523	.500	.503	.875
160 H or HS	2	1.838	.562	.565	1.000
180 H ot HS	21/4	2.058	.687	.690	1.125
200 H or HS	21/2	2.285	.781	.784	1.250
625	5/8	.542	.200	.203	.312
750	3/4	.696	.234	.237	.375
55 S*	5/8	.542	.200	.203	.312
65 S*	3/4	.696	.234	.237	.375
85*	1	.886	.312	.315	.500
105*	1¼	1.076	.375	.378	.625
125*	1½	1.390	.437	.440	.750

^{*} Chains are roller less.

OIL FIELD CHAIN


Chain Descriptions and Dimensions

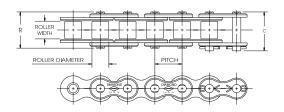

Roller chains used in the oil and natural gas industries are subjected to some of the greatest loads and harshest environments. These conditions are far more severe than usually found in industrial applications. These "Oil Field" chains can be either single strand or multiple strand and are typically constructed using Heavy Series components.

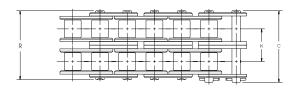
We produce our Oil Field chains with the same attention to detail that goes into all our products, but additionally these models are subjected to the most up to date API (American Petroleum Institute) Specification 7F performance testing. By examining the label on the box which proudly displays the API logo, users of our chains can be certain they are receiving the highest quality, best-performing product available. Only those companies which have established quality systems, approved and routinely audited, are authorized to display this symbol.

The following list of chain sizes and configurations are those which meet or exceed the performance criteria defined in API Specification 7F. It is highly recommended that multiple strand chains used in oil field applications be constructed with press-fit center plates. More information about press-fit construction is available in the Multiple Strand section of this product guide.

Dimensions in Inches and Pounds

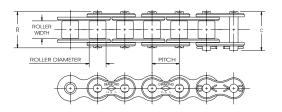
ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
40	1/2	⁵ ⁄ ₁₆	.312	.156	.060	.72	.67	_	.41	4000
40-2	1/2	⁵ / ₁₆	.312	.156	.060	1.29	1.24	.566	.80	8000
40-3	1/2	⁵ / ₁₆	.312	.156	.060	1.85	1.80	.566	1.20	12000
40-4	1/2	⁵ / ₁₆	.312	.156	.060	2.42	2.37	.566	1.60	16000
40-6	1/2	⁵ ⁄ ₁₆	.312	.156	.060	3.56	3.51	.566	2.42	24000
50	5/8	3/8	.400	.200	.080	.89	.83	_	.68	6600
50-2	5/8	3/8	.400	.200	.080	1.60	1.55	.713	1.32	13200
50-3	5/8	3/8	.400	.200	.080	2.31	2.26	.713	1.98	19800
50-4	5/8	3/8	.400	.200	.080	3.03	2.97	.713	2.64	26400
50-5	5/8	3/8	.400	.200	.080	3.75	3.69	.713	3.30	33000
50-6	5/8	3/8	.400	.200	.080	4.46	4.40	.713	3.96	39600
50-8	5/8	3/8	.400	.200	.080	5.89	5.83	.713	5.30	52800
50-10	5/8	3/8	.400	.200	.080	7.32	7.26	.713	6.62	66000
60	3/4	1/2	.469	.234	.094	1.11	1.04	_	.99	8500
60H	3/4	1/2	.469	.234	.125	1.24	1.17	_	1.18	8500
60-2	3/4	1/2	.469	.234	.094	2.01	1.94	.897	1.95	17000
60H-2	3/4	1/2	.469	.234	.125	2.27	2.20	1.028	2.33	17000
60-3	3/4	1/2	.469	.234	.094	2.91	2.84	.897	2.88	25500
60H-3	3/4	1/2	.469	.234	.125	3.31	3.24	1.028	3.47	25500
60-4	3/4	1/2	.469	.234	.094	3.81	3.74	.897	3.90	34000
60H-4	3/4	1/2	.469	.234	.125	4.34	4.26	1.028	4.61	34000
60-5	3/4	1/2	.469	.234	.094	4.71	4.64	.897	4.97	42500
60-6	3/4	1/2	.469	.234	.094	5.60	5.53	.897	5.96	51000
60-8	3/4	1/2	.469	.234	.094	7.40	7.33	.897	7.94	68000
60-10	3/4	1/2	.469	.234	.094	9.19	9.12	.897	9.92	85000

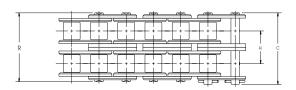

ASME/ANSI 60 and larger chains are available as cottered or riveted type design. Multiple strand chains are available with slip-fit (standard) or press-fit center plates.


Chart continues on next page.

OIL FIELD CHAIN

Chain Descriptions and Dimensions


Dimensions in Inches and Pounds


Chart continued from previous page.

ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	K	Weight Per Foot	Average Tensile Streng
80	1	5/8	.625	.312	.125	1.44	1.32		1.73	14500
80H	1	5/8	.625	.312	.156	1.57	1.45		2.02	14500
80-2	1	5/8	.625	.312	.125	2.59	2.47	1.153	3.37	29000
80H-2	1	5/8	.625	.312	.156	2.84	2.72	1.283	3.93	29000
80-3	1	5/8	.625	.312	.125	3.74	3.62	1.153	5.02	43500
80H-3	1	5/8	.625	.312	.156	4.14	4.02	1.283	5.92	43500
80-4	1	5/8	.625	.312	.125	4.90	4.79	1.153	6.73	58000
80H-4	1	5%	.625	.312	.156	5.42	5.30	1.283	7.87	58000
80-5	1	5/8	.625	.312	.125	6.06	5.94	1.153	8.40	72500
80-6	1	78 5%	.625	.312	.125	7.22	7.10	1.153	10.07	87000
						l		I .		
80-8	1	5/8	.625	.312	.125	9.53	9.40	1.153	13.41	116000
100	11/4	3/4	.750	.375	.156	1.73	1.61		2.51	24000
100H	111/4	3/4	.750	.375	.187	1.86	1.74	_	2.82	24000
100-2	111/4	3/4	.750	.375	.156	3.14	3.02	1.408	4.91	48000
100H-2	11/4	3/4	.750	.375	.187	3.41	3.28	1.539	5.58	48000
100-3	11/4	3/4	.750	.375	.156	4.56	4.43	1.408	7.40	72000
100H-3	11/4	3/4	.750	.375	.187	4.95	4.82	1.539	8.32	72000
100-4	11/4	3/4	.750	.375	.156	5.97	5.84	1.408	9.80	96000
100H-4	11/4	3/4	.750	.375	.187	6.49	6.37	1.539	11.04	96000
100-5	11/4	3/4	.750	.375	.156	7.38	7.25	1.408	12.20	120000
100-6	11/4	3/4	.750	.375	.156	8.78	8.66	1.408	14.60	144000
100-8	11/4	3/4	.750	.375	.156	11.60	11.48	1.408	19.40	192000
120	1½	1	.875	.437	.187	2.14	2.00		3.69	34000
120H	11/2	i	.875	.437	.219	2.27	2.13		4.08	34000
120-2	1½	i	.875	.437	.187	3.93	3.79	1.789	7.35	68000
						I				
120H-2	1½	1	.875	.437	.219	4.20	4.06	1.924	8.04	68000
120-3	1½	1	.875	.437	.187	5.72	5.58	1.789	11.10	102000
120H-3	1½	1	.875	.437	.219	6.13	5.99	1.924	11.99	102000
120-4	1½	1	.875	.437	.187	7.52	7.38	1.789	14.70	136000
120H-4	1½	1	.875	.437	.219	8.06	7.92	1.924	15.94	136000
120-5	1½	1	.875	.437	.187	9.31	9.17	1.789	18.43	170000
120-6	1½	1	.875	.437	.187	11.10	10.96	1.789	22.11	204000
120H-6	1½	1	.875	.437	.219	11.91	11.77	1.924	23.84	204000
120-8	1½	1	.875	.437	.187	14.68	14.54	1.789	29.47	272000
120-10	1½	1	.875	.437	.187	18.26	18.12	1.789	36.83	340000
140	13/4	1	1.000	.500	.219	2.31	2.14		5.00	46000
140H	13/4	1	1.000	.500	.250	2.44	2.28		5.40	46000
140-2	13/4	1	1.000	.500	.219	4.24	4.07	1.924	9.65	92000
140H-2	13/4	1	1.000	.500	.250	4.50	4.34	2.055	10.65	92000
140-3	13/4	1	1.000	.500	.219	6.16	6.00	1.924	14.30	138000
140-3 140H-3	1% 1%		1.000							138000
		1		.500	.250	6.56	6.39	2.055	15.90	
140-4	13/4	1	1.000	.500	.219	8.09	7.93	1.924	18.95	184000
140H-4	1¾	1	1.000	.500	.250	8.62	8.45	2.055	21.10	184000
140-6	1¾	1	1.000	.500	.219	11.94	11.78	1.924	28.25 Chart.com	276000

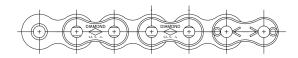
OIL FIELD CHAIN

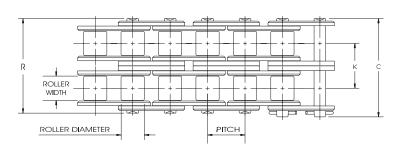
Chain Descriptions and Dimensions

Dimensions in Inches and Pounds

Chart continued from previous page.

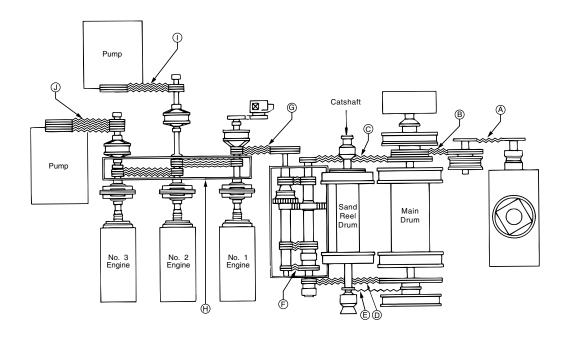
ASME/ANSI Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	K	Weight Per Foot	Average Tensile Strength
160	2	111/4	1.125	.562	.250	2.73	2.54	_	6.53	58000
160H	2	11/4	1.125	.562	.281	2.86	2.68	_	7.03	58000
160-2	2	11/4	1.125	.562	.250	5.04	4.85	2.305	12.83	116000
160H-2	2	11/4	1.125	.562	.281	5.30	5.12	2.436	13.88	116000
160-3	2	11/4	1.125	.562	.250	7.35	7.16	2.305	19.03	174000
160H-3	2	11/4	1.125	.562	.281	7.75	7.56	2.436	20.68	174000
160-4	2	11/4	1.125	.562	.250	9.66	9.47	2.305	25.60	232000
160H-4	2	11/4	1.125	.562	.281	10.17	10.00	2.436	27.62	232000
160-6	2	11/4	1.125	.562	.250	14.27	14.09	2.305	37.78	348000
180	21/4	113/32	1.406	.687	.281	3.15	2.88	_	9.06	76000
180H	21/4	1 ¹³ / ₃₂	1.406	.687	.312	3.28	3.01	_	9.59	76000
180-2	21/4	1 ¹³ / ₃₂	1.406	.687	.281	5.75	5.48	2.592	17.67	152000
180H-2	21/4	1 ¹³ / ₃₂	1.406	.687	.312	6.00	5.73	2.723	18.86	152000
180-3	21/4	1 ¹³ / ₃₂	1.406	.687	.281	8.34	8.07	2.592	26.20	228000
180H-3	21/4	1 ¹³ / ₃₂	1.406	.687	.312	8.73	8.46	2.723	28.14	228000
200	21/2	1½	1.562	.781	.312	3.44	3.12	_	10.65	95000
200H	21/2	1½	1.562	.781	.375	3.71	3.39	_	13.38	110000
200-2	21/2	1½	1.562	.781	.312	6.26	5.94	2.817	21.50	190000
200H-2	21/2	1½	1.562	.781	.375	6.79	6.48	3.083	26.38	220000
200-3	21/2	1½	1.562	.781	.312	9.08	8.76	2.817	32.30	285000
200H-3	21/2	1½	1.562	.781	.375	9.88	9.56	3.083	40.85	330000
200-4	2½	1½	1.562	.781	.312	11.90	11.58	2.817	42.90	380000
200-6	21/2	1½	1.562	.781	.312	17.52	17.21	2.817	64.50	570000
240	3	17//8	1.875	.937	.375	4.32	3.83		17.03	157600
240H	3	17//8	1.875	.937	.500	4.85	4.35		21.08	157600
240-2	3	17//8	1.875	.937	.375	7.77	7.27	3.458	33.44	315200
240-3	3	17//8	1.875	.937	.375	11.23	10.73	3.458	49.77	472800


ASME/ANSI 60 and larger chains are available as cottered or riveted type design. Multiple strand chains are available with slip-fit (standard) or press-fit center plates.


OIL FIELD CHAIN

Chain Descriptions and Dimensions

Additionally, Diamond produces a narrow width $1-\frac{1}{2}$ " pitch roller chain for some of the older rigs and associated equipment as well as $2-\frac{1}{2}$ " pitch chain with a special larger pin diameter. These chains do not fall under the ASME/ANSI standards and therefore are not covered by API. Diamond still produces these non-standard chain to the highest quality standards, ensuring its superior performance.



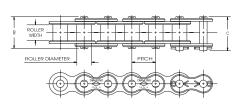
Dimensions in Inches and Pounds

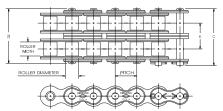
Diamond Number	Other ID	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	K	Weight Per Foot	Average Tensile Strength
472		11/2	3/4	.875	.437	.187	1.93	1.80		3.41	34000
472-2		11/2	3/4	.875	.437	.187	3.45	3.30	1.55	6.76	68000
472-3		1½	3/4	.875	.437	.187	5.00	4.85	1.55	10.08	102000
472-4		1½	3/4	.875	.437	.187	6.55	6.41	1.55	13.40	136000
264	64S	21/2	11/2	1.562	.875	.375	3.71	3.39		13.68	148500
264-3	64S-3	21/2	11/2	1.562	.875	.375	9.88	9.56	3.083	40.92	445500

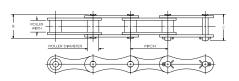
OIL FIELD CHAIN

Chain Descriptions and Dimensions

Chain Drive			,	Rig Horsepower			
	4000	3000	2000	1500	1000	750	500
A. Rotary Table	160-2	160-2	160-2	160-2	140-2	140-2	140-1
		200H-1		140-2	160-1	160-1	120-1
B. Rotary Countershaft	160-2	160-2	160-2	160-2	140-2	140-2	140-1
		200H-1		140-2	160-1	160-1	120-1
C. High Drum	240-3	200H-3	160-4	160-3	140-3	160-2	120-3
					160-2	140-2	140-2
D. Low Drum	240-3	200H-3	160-4	160-3	140-3	160-2	120-3
					160-2	140-3	140-2
E. Catshaft	160-2	160-2	160-2	160-1	160-1	160-1	140-1
		200H-1		140-2	140-2	140-2	120-1
F. Transmission	140-8	160-4	160-4	160-3	160-2	140-2	120-2
		200H-3	160-3		140-3		100-3
G. Drawworks Input	140-8	120-8	120-6	120-4	120-3	100-4	100-3
					120-4		100-4
H. Compound	140-8	120-8	120-6	120-4	120-3	100-4	100-3
					120-4		
I. & J. Mud Pump Drives	140-8	120-8	120-8	120-6	120-4	100-6	100-4
			120-6	120-4	120-3	100-4	100-3


SPECIAL LUBRICATED CHAIN


Chain Descriptions and Dimensions


When the environment or location of your roller chain drive is such that regular lubrication is not possible or practical, consider Diamond Chain's Special Lubricated chains. Diamond offers three types of chain designed specifically to deliver the highest level of performance – even in applications that can't or don't receive proper lubrication.

DURALUBE® Chain

For applications where regular lubrication is a challenge, DURALUBE can offer a longer lasting solution. This chain is constructed using a one-piece powdered metal bushing/roller combination which has lubricant drawn in under vacuum. In service, this lubricant is released and provides supplemental lubrication to the pin/bushing joint between regularly scheduled maintenance. Generally, the wear life of DURALUBE chain can be five times that of standard (initially lubricated only) chain.

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
40-DL	1/2	⁵ /16	.312	.156	.060	.72	.67		.40	3300
40-2-DL	1/2	5/16	.312	.156	.060	1.29	1.24	.566	.81	6600
50-DL	5/8	3/8	.400	.200	.080	.89	.83		.65	5200
50-2-DL	5/8	3/8	.400	.200	.080	1.60	1.55	.713	1.27	10400
60-DL	3/4	1/2	.469	.234	.094	1.11	1.04		.95	7400
60-2-DL	3/4	1/2	.469	.234	.094	2.01	1.94	.897	1.85	14800
80-DL	1	5/8	.625	.312	.125	1.44	1.32		1.60	13000
2040-DL	1	⁵ /16	.312	.156	.060	.76	.68		.30	3300
2050-DL	1 ¹ / ₄	3/8	.400	.200	.080	.92	.84		.47	5200
2060-DL	11/2	1/2	.469	.234	.094	1.11	1.05		.70	7400

Attachments for pin link only. Consult Diamond for standard attachment availability.

Due to the nature of DURALUBE chain's construction, the following speed and temperature limitations should be considered prior to the chain's selection or installation.

Single-Pitch	Max. Speed
#40	1300 ft/min
#50	1000 ft/min
#60	850 ft/min
#80	650 ft/min

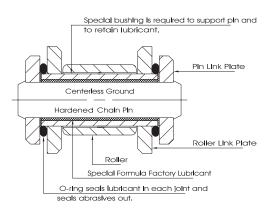
Ambient temperature should not exceed 120° F.

Double-Pitch	Max. Speed
All	600 ft/min

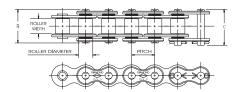
Ambient temperature should not exceed 120° F.

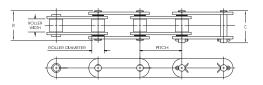
SPECIAL LUBRICATED CHAIN

Chain Descriptions and Dimensions


RING LEADER® 0-ring Chain

Diamond's RING LEADER O-ring chain is specifically designed for applications that don't permit regular lubrication, requiring the chain to depend entirely upon initial factory lubrication throughout its service life. Depending upon the specific conditions, RING LEADER can provide up to ten times the wear life of standard chain.


Industries such as agriculture, food processing, packaging, printing, textile and chemical processing can introduce contaminants that damage standard chain. Dirt, mud, food particles, paper fines, dust and moisture can cause buildup on the chain and clog the openings on standard roller chain where lubrication enters the pin/bushing area. These contaminants can even get inside the chain, actually damaging the surface of pins and bushings.


RING LEADER O-ring chain is constructed with O-rings that seal a specially formulated lubricant into every joint.

This sealed-in lubricant is essential for the chain's optimum wear life and the O-rings also help to seal out and protect the internal surfaces from dirt, contaminants and moisture. Diamond recommends that RING LEADER O-ring chain receive periodic external lubrication to maintain moisture on the external O-ring surfaces and to lubricate roller/sprocket contact surfaces. Note: Standard RING LEADER O-ring chain can routinely operate in ambient temperatures up to 150° F. For higher temperature requirements, special O-rings can be substituted, allowing operation in temperatures of 400° F or greater.

Because the RING LEADER chain lasts up to ten times longer than regular chain, overall economy of operation is improved. With lubrication already sealed into the chain, maintenance expense is lowered. RING LEADER O-ring chain experiences less wear elongation during normal operation, thus providing a longer service life. Life cycle costs of RING LEADER chain can be dramatically less than for standard chain in certain applications which translates into longer lasting roller chain and a real cost savings.

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
50 XLO	5/8	3/8	.400	.200	.080	.95	.89	.72	6500
50H XLO	5/8	3/8	.400	.214	.094	1.02	.96	.93	9300
60 XLO	3/4	1/2	.469	.234	.094	1.21	1.13	1.01	7700
80 XLO	1	5%	.625	.312	.125	1.51	1.41	1.77	13500
100 XLO	1 1/4	3/4	.750	.375	.156	1.83	1.74	2.55	22000
120 XLO	1 ½	1	.875	.437	.187	2.24	2.12	3.76	30000
140 XLO	1 ¾	1	1.000	.500	.219	2.49	2.35	5.10	42000
160 XLO	2	1 1/4	1.125	.562	.250	2.96	2.82	6.66	52000
C2050 XLO	1 1/4	3/8	.400	.200	.080	.95	.89	.59	6500
C2060H XLO	1 ½	1/2	.469	.234	.125	1.27	1.21	1.17	7700

Consult Diamond for standard attachment availability.

www.diamondchain.com

SPECIAL LUBRICATED CHAIN

Chain Descriptions and Dimensions

DUST STOPPER™ Chain

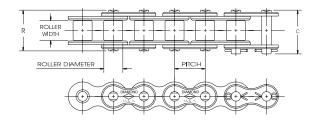
Fora applications which require the combined benefits of DURALUBE design construction and RING LEADER style O-rings and a specially formulated lubricant, DUST STOPPER offers the utmost in speciallized protection. DUST STOPPER uses a one piece powdered metal bushing/roller combination which has lubricant drawn in under vacuum and is constructed with O-rings that seal a specially formulated lubricant into every joint. Wear life of DUST STOPPER chain is significantly greater than that of standard (initially lubricated only) chain. Due to the nature of DUST STOPPER chain's design and construction, ambient temperature should not exceed 120°F and maximum speed limitations should be considered prior to the chain's selection or installation.

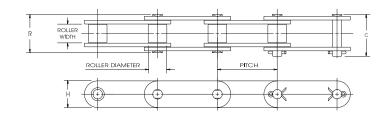
	Max. Speed
40XDLO	1300 ft/min
50XDLO	1000 ft/min
60XDLO	850 ft/min
80XDLO	650 ft/min

- Seals dust, dirt and debris out
- · Seals lubrication in
- · Very minimal, if any, secondary lubrication required
- Improved wear resistance and toughness
- Combines the advantages of two proven Diamond products:
 - Ring Leader" O-Ring Chain &
 - Duralube" Self-lubricating Chain

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Pate Thickness	С	R	Weight Per Foot	Average Tensile Strength	Max. Speed ft/min
40XDLO	1/2	5/16	.312	.156	.060	.78	.73	.43	3300	1300
50XDLO	5%	3%	.400	.200	.080	.95	.59	.68	5200	1000
60XDLO	3/4	1/2	.469	.234	.094	1.21	1.13	.95	7400	850
80XDLO	1	5%	.625	.312	.125	1.51	1.41	1.59	13000	650


Chain Descriptions and Dimensions


Nickel-Plated Chain

Diamond Chain produces a full line of Nickel-Plated roller chains for a variety of uses in environments where the chains are exposed to moisture. Common uses include applications exposed to the weather, high humidity or those on machines that are frequently washed down with water.

Diamond Nickel-Plated chain is different from many rust-resistant chains, because Diamond electroless nickel plates all of the components before assembly, virtually eliminating the possibility of stress-corrosion cracking. Pre-assembly plating also ensures all components are plated, which prevents internal rust from seeping out and causing contamination. Standard attachments are available with quick delivery. See standard attachment chain section for dimensional information.

Note: These chains are not intended to resist corrosion from caustic chemicals or acids. For those types of applications, stainless steel chain is recommended.

Dimensions in Inches and Pounds

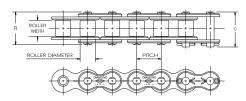
Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
25NP	1/4	1/8	*.130	.090	.030	.37	.34	.085	875
35NP	3/8	³ / ₁₆	*.200	.141	.050	.56	.50	.220	2100
40NP	1/2	⁵ / ₁₆	.312	.156	.060	.72	.67	.420	4000
50NP	5/8	3/8	.400	.200	.080	.89	.83	.680	6600
60NP	3/4	1/2	.469	.234	.094	1.11	1.04	.970	8500
80NP	1	5/8	.625	.312	.125	1.44	1.32	1.700	14500
100NP	1 ¹ / ₄	3/4	.750	.375	.156	1.73	1.61	2.500	24000
120NP	11/2	1	.875	.437	.187	2.14	2.00	3.700	34000
C2040NP	1	⁵ / ₁₆	.312	.156	.060	.76	.68	.320	3700
C2050NP	1 ¹ / ₄	3/8	.400	.200	.080.	.92	.84	.550	6100
C2060HNP	11/2	1/2	.469	.234	.125	1.25	1.18	.970	8500

^{*} Chains are rollerless — dimension shown is bushing diameter.

Standard attachments are available for above models.

Chain Descriptions and Dimensions

Diamond ACE®

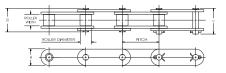

Diamond ACE (Anti-Corrosion Exterior) chain is uniquely designed and incorpoates an electrochemically bonded, protected exterior coating that is applied to the componet parts prior to assembly. Pre-assembly coating ensures all componet parts are thoroughly treated, which prevents internal rust from seeping out and causing contamination.

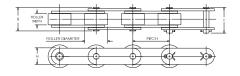
The protective coating serves as an insulating barrier that actually oxidizes <u>before</u> the carbon steel base chain, thus protecting and preserving the chain's physical and structural integrity.

Common applications for Diamond ACE include exposure to weather, high humidity or on machinery that is routinely washed down with water. Standard attachments are available with quick delivery. See standard attachment chain section for dimensional program.

Note: These chains are not intended to resist corrosion from caustic chemicals or acids. Stainless steel chain is normally recommended for those types of applications. Contact Diamond's Application Engineers for assistance in selecting the proper chain for your application.

Single-Pitch Drive chains




Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
40 ACE	1/2	⁵ / ₁₆	.312	.156	.060	.720	.670	.420	4000
50 ACE	5%	3/8	.400	.200	.080	.890	.830	.680	6600
60 ACE	3/4	1/2	.469	.234	.094	1.110	1.040	.970	8500
80 ACE	1	5/8	.625	.312	.125	1.440	1.320	1.700	14500

^{*} For sizes not listed, contact Diamond for availability on a made-to-order basis. Standard attachments are available for above models

Double-Pitch Drive chains

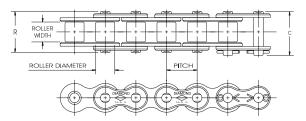
Dimensions in Inches and Pounds

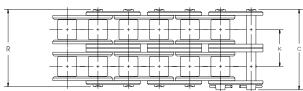
Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
C-2040 ACE	1	5/16	.312	.156	.060	.760	.680	.340	3700
C-2042 ACE	1	⁵ / ₁₆	.625	.156	.060	.760	.680	.340	3700
C-2050 ACE	11/4	3/8	.400	.200	.080	.920	.840	.580	6100
C-2052 ACE	1 ¹ / ₄	3/8	.750	.200	.080	.920	.840	.580	6100
C-2060H ACE	11/2	1/2	.469	.234	.125	1.250	1.180	1.050	8500
C-2060H ACE	11/2	1/2	.875	.234	.125	1.250	1.180	1.050	8500
C-2080H ACE	2	5/8	.625	.312	.156	1.570	1.450	1.400	14500
C-2080H ACE	2	5/8	1.125	.312	.156	1.570	1.450	1.400	14500

^{*} For sizes not listed, contact Diamond for availability on a made-to-order basis. Standard attachments are available for above models.

Chain Descriptions and Dimensions

Stainless Steel Chain


Diamond produces a wide range of Single-Pitch Drive and Double-Pitch Conveyor chains manufactured in four combinations of stainless steel depending upon the specific application.

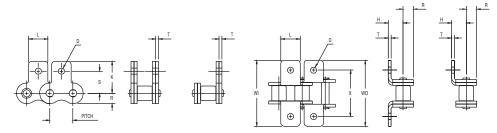

AP Stainless Chain: This chain is assembled using 300 Series (austenitic stainless) link plates, bushings and rollers along with a precipitation-hardened stainless steel pin. This combination increases the wear life of this chain over those constructed entirely of 300 Series components. AP Stainless chains are well suited for food processing, and are approved by the Food and Drug Administration. AP Stainless will be supplied unless otherwise specified.

300 Series Stainless Chain: These chains are assembled entirely from 300 Series (austenitic) components. They have excellent corrosion resistance and very low magnetic permeability but cannot be expected to have the same wear resistance of our heat treated stainless chains. For industries that require it, 300 Series chains can be considered "non-sparking."

400 Series Stainless Chain: These chains are manufactured using 300 Series link plates but have pins, bushings and rollers that are produced from 400 Series (martensitic) heat treated stainless. This combination significantly increases wear resistance over those that are constructed using only 300 Series stainless chains. The properties of the 400 Series heat treated parts may, in some instances, cause them to discolor when in contact with certain chemicals.

600 Series Stainless Chain: These chains are assembled using 300 Series link plates, with pins, bushings and rollers made from 600 Series (17-4/17-7) precipitation-hardened stainless.

Dimensions in Inches and Pounds

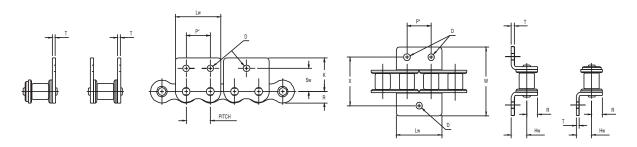

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	LinkPlate Thickness	С	R	К	Weight Per Foot	Average Tensile Strength
47SS	.1475	.072	*.090	.062	.015	.25	.22		.035	180
25SS	1/4	1/8	*.130	.090	.030	.37	.34		.084	700
25-2SS	1/4	1/8	*.130	.090	.030	.63	.59	.252	.163	1400
35SS	3/8	³ ⁄ ₁₆	*.200	.141	.050	.56	.50		.210	1700
40SS	1/2	⁵ ⁄ ₁₆	.312	.156	.060	.72	.67		.410	3000
40-2SS	1/2	⁵ ⁄ ₁₆	.312	.156	.060	1.29	1.24	.566	.800	6000
41SS	1/2	1/4	.306	.141	.050	.65	.57		.280	1700
50SS	5%	3/8	.400	.200	.080	.89	.83		.680	4700
50-2SS	5%	3/8	.400	.200	.080	1.60	1.55	.713	1.320	9400
60SS	3/4	1/2	.469	.234	.094	1.11	1.04		1.000	6750
60-2SS	3/4	1/2	.469	.234	.094	2.01	1.94	.897	1.950	13500
80SS	1	5%	.625	.312	.125	1.44	1.32		1.690	12000

^{*} Chains are rollerless — dimension shown is bushing diameter.

Chain Descriptions and Dimensions

Standard Straight and Bent Attachment Stainless Steel Chain

Others	Diamond
M-35, SA1	S1 (one hole)
M-1, SK1	S2 (one hole)


Others	Diamond
A1	B1 (one hole)
K1	B2 (one hole)

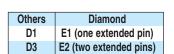
Dimensions in Inches

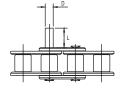
Diamond Number	Pitch Inches	D	н	K	L	R Max.	s	T	WI	wo	Х
25SS	.250	.125	.180	.451	.218	.119	.308	.030	.781	.843	.562
35SS	.375	.102	.250	.577	.312	.178	.387	.050	1.125	1.125	.750
40SS	.500	.141	.312	.684	.375	.238	.489	.060	1.390	1.390	1.000
41SS	.500	.141	.282	.698	.375	.192	.482	.050	1.375	1.375	.937
50SS	.625	.203	.406	.895	.500	.297	.618	.080	1.812	1.812	1.250
60SS	.750	.203	.478	1.038	.625	.356	.716	.094	2.135	2.135	1.500
80SS	1.000	.266	.625	1.339	.750	.475	.968	.125	2.750	2.750	2.000

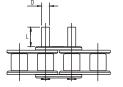
Above attachments available for multiple strand chain.

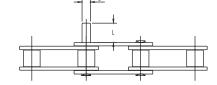
Wide Contour Straight and Bent Attachment Stainless Steel Chain

Others	Diamond	Others	Diamond
WM-35	WCS1 (one hole)	WM-1	WCS2 (one hole)
WM-35-2	WCS1 (two holes)	WM-2	WCS2 (two holes)

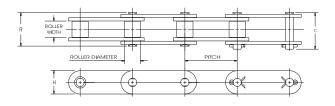

Others	Diamond	Others	Diamond
WA-1	WCB1 (one hole)	WK-1	WCB2 (one hole)
WA-2, A2	WCB1 (two holes)	WK-2, K2	WCB2 (two holes)


Dimensions in Inches


Diamond Number	Pitch Inches	D	Hw	К	Lw	Р	R Max.	Sw	Т	W	х
35SS	.375	.125	.262	.577	.727	.375	.178	.399	.050	1.105	.750
40SS	.500	.141	.326	.684	.946	.500	.238	.503	.060	1.366	1.000
50SS	.625	.203	.406	.895	1.211	.625	.297	.618	.080	1.807	1.250
60SS	.750	.203	.478	1.038	1.420	.750	.356	.716	.094	2.135	1.500
80SS	1.000	.266	.625	1.339	1.885	1.000	.475	.967	.125	2.750	2.000


Chain Descriptions and Dimensions

Standard Extended Pin Stainless Steel Chain



Dimensions in Inches

Diamond Number	Pitch Inches	D ± .0005"	L ± .010"
35SS	.375	.141	.375
40SS	.500	.156	.383
41SS	.500	.141	.375
50SS	.625	.200	.469
60SS	.750	.234	.562
80SS	1.000	.312	.750

Dimensions in Inches

Diamond Number	Pitch Inches	D ± .0005"	L ± .010"
C2040SS	1.00	.156	.375
C2042SS	1.00	.156	.375
C2050SS	1.25	.200	.469
C2052SS	1.25	.200	.469
C2060SS	1.50	.234	.562
C2062SS	1.50	.234	.562
C2080SS	2.00	.312	.750
C2082SS	2.00	.312	.750

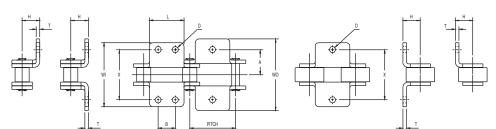
Double-Pitch Oval Contour Stainless Steel Conveyor Chain - Standard Diameter Roller

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
C-2040SS	1	⁵ ⁄ ₁₆	.312	.156	.060	.76	.68	.34	3000
C-2050SS	11/4	3/8	.400	.200	.080	.92	.84	.56	4700
C-2060SS	1½	1/2	.469	.234	.094	1.11	1.05	.81	6750
C-2080SS	2	5/8	.625	.312	.125	1.44	1.32	1.40	12000

Double-Pitch Oval Contour Stainless Steel Conveyor Chain - Large Diameter Roller

Dimensions in Inches and Pounds

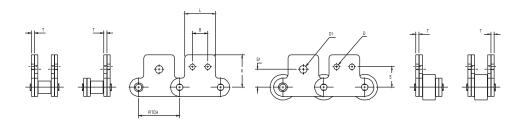

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
C-2042SS	1	⁵ ⁄ ₁₆	.625	.156	.060	.76	.68	.55	3000
C-2052SS	11/4	3/8	.750	.200	.080	.92	.84	.86	4700
C-2062SS	1½	1/2	.875	.234	.094	1.11	1.05	1.27	6750
C-2082SS	2	5/8	1.125	.312	.125	1.44	1.32	2.06	12000

Chain Descriptions and Dimensions

Double-Pitch Oval Contour Stainless Steel Conveyor Chain Bent Attachments

Oval Contour Link Plates Standard and Oversized Roller

Others	Diamond
A1	B1 (one hole)
A2	B1 (two holes)


Others	Diamond
K1	B2 (one hole)
K2	B2 (two holes)

Dimensions in Inches

Standard	d Roller											Large F	Roller
Diamond Number	Roller Diameter	Pitch Inches	Α	В	D	Н	L	Т	WI	WO	Х	Diamond Number	Roller Diameter
C2040SS	.312	1.00	.500	.375	.141	.355	.750	.060	1.350	1.488	1.000	C2042SS	.625
C2050SS	.400	1.25	.625	.469	.203	.453	.937	.080	1.692	1.863	1.250	C2052SS	.750
C2060SS	.469	1.50	.844	.562	.203	.561	1.125	.094	2.115	2.317	1.688	C2062SS	.875
C2080SS	.625	2.00	1.094	.750	.266	.739	1.500	.125	2.760	3.028	2.188	C2082SS	1.125

Double-Pitch Oval Contour Stainless Steel Conveyor Chain Straight Attachments

Oval Contour Link Plates Standard and Oversized Roller

Others	Diamond
M-35, SA1	S1 (one hole)
M-35-2, SA2	S1 (two holes)

Ot	hers	Diamond
M-	I, SK1	S2 (one hole)
M-2	2, SK2	S2 (two holes)

Dimensions in Inches

Standard Ro	oller		2 At	tachment H	oles				1 Attachi	ment Hole	Large Roller	
Diamond Number	Roller Diameter	Pitch Inches	В	D	s	K	L	Т	D1	S1	Diamond Number	Roller Diameter
C2040SS	.312	1.00	.375	.141	.531	.773	.750	.060	.188	.438	C2042SS	.625
C2050SS	.400	1.25	.469	.203	.625	.971	.937	.080	.250	.563	C2052SS	.750
C2060SS	.469	1.50	.562	.203	.750	1.203	1.125	.094	.329	.688	C2062SS	.875
C2080SS	.625	2.00	.750	.266	1.000	1.590	1.500	.125	.375	.875	C2082SS	1.125

TR = Total Resistance

PR = Partial Resistance

SR = Satisfactory Resistance

NR = Not Recommended

Corrosion Resistance of Stainless Steel Chains

	AP & 600 Series Stainless	300 Series Stainless	400 Series Stainless	NP or ACE®		AP & 600 Series Stainless	300 Series Stainless	400 Series Stainless	NP or ACE®
Acetic Acid					Bichloride of Mercury				
Dilute 70°F	TR	TR	PR	NR	less than 0.1%	TR	TR		NR
Dilute Boiling	TR	PR	PR	NR	greater than 0.7%-cold	SR	SR		NR
Conc. 70°F	TR	TR	PR	NR	greater than 0.7%-hot	PR	PR		
Conc. Boiling	PR	SR	PR	NR	Calcium Hypochloride	PR	PR	PR	NR
Acetic Anhydride	TR	TR	SR	NR	Blood (Meat Juices)	TR	TR	TR	NR
Acetic Vapors	TR	PR		NR	Blue Vitriol (Copper Sulfate)	111	***	111	INII
Acetone	TR	TR	SR	NR	5%-70°F	TR	TR	TR	NR
Alcohol (Methyl, Ethyl,	111	111	OH	INIT	Saturated Solution-Boiling	TR	TR		NR
Propyl, and Butyl)	TR	TR	TR	NR	Borax	TR	TR	TR	NR
Aluminum Acetate	TR	TR	IN 	NR NR	Boric Acid	TR	TR	TR	NR
Aluminum Chloride	PR	PR	PR	NR	Bromine	NR	NR	NR	NR
Aluminum Sulfate	OD	TD		ND	Buttermilk Butteria Apid	TR	TR	TR	NR
70°F	SR	TR		NR	Butyric Acid	SR	TR	TR	NR
Boiling	SR	SR		NR	Calcium Chloride (Alkaline)	TD	TD		ND
Aluminum Potassium Sulfate		TD			Boiling	TR	TR		NR
70°F	TR	TR	PR	NR	Boiling, 300 lbs. Pressure	NR	PR		NR
Boiling	SR	SR		NR	Calcium Carbonate	TR	TR	TR	NR
Ammonia		TD	TD	NB	Calcium Oxychloride	PR	PR		NR
(Ammonium Hydroxide)	TR	TR	TR	NR	Calcium Sulfate	TR	TR		NR
Ammonium Bicarbonate	TR	TR	TR	NR	Carbolic Acid	TR	TR	TR	NR
Ammonium Chloride					Carbon Disulfide	TR	TR	TR	NR
70°F	TR	TR	SR	NR	Carbon Monoxide	TR	TR	TR	NR
Boiling	NR	SR		NR	Carbon Tetrachloride (Pure)	TR	TR	TR	NR
Ammonium Nitrate	TR	TR	TR	NR	Carnallite (Potassium,				
Ammonium Oxalate	TR	TR	TR	NR	Magnesium Chloride)	SR	SR		NR
Ammonium Persulfate	TR	TR		NR	Caustic Lime, Potash or Soda				
Ammonium Sulfate					(Calcium, Potassium, or So-				
70°F	TR	TR	SR	NR	dium Hydroxide), Lye				
plus 0.5% H ₂ SO ₄	TR	TR		NR	70°F	TR	TR	TR	NR
plus 5.0% H ₂ SO ₄	TR	PR		NR	Boiling	SR	SR	SR	NR
Ammonium Stannichloride					Cellulose	TR	TR		NR
70°F	SR	SR		NR	Chlorine Gas				
120°F	NR	NR		NR	Dry	NR	PR	PR	NR
Aniline	TR	TR	TR	NR	Moist	NR	NR	NR	NR
Aniline Hydrochloride	PR	PR		NR	Chlorinated Water	NR	PR	TR	NR
Antimony, Molten, 1100°F	NR	NR	NR	NR	Chlorobenzine	TR	TR		NR
Baking Soda					Chloroform	TR	TR		NR
(Sodium Bicarbonate)	TR	TR	TR	NR	Chromic Acid	***	***		1411
Barium Carbonate	TR	TR	TR	NR	70°F	TR	SR	PR	NR
Barium Chloride	111	***	111	1411	Boiling	PR	PR		NR
70°F	TR	TR	SR	NR	with SO ₃ , Boiling	NR	NR	NR	NR
Hot	SR	SR		NR	Chrome Aluminum	TR	TR	IND 	NR
Barium Nitrate	TR	TR		NR	Boiling	NR	NR		NR
Barium Sulfate	TR	TR		NR	•	INU	INU		INU
			TR		Citric Acid-10%	TD	TD	TD	ND
Beer Beer	TR	TR		NR	70°F	TR	TR	TR	NR
Beet Juice	TR	TR	TR	NR	Boiling	PR	PR	NR	NR
Benzene (Benzol)	TR	TR	TR	NR	Cola Syrup	TR	TR	SR	NR
Benzine	TR	TR	TR	NR	Copperas (Ferrous Sulfate)	SR	SR	SR	NR
Benzoic Acid	TR	TR	TR	NR	Copper Acetate	TR	TR		NR

Chart continues on next page.

Corrosion Resistance of Stainless Steel Chains

Chart continued from previous page.

	AP & 600	300	400	NP		AP & 600	300	400	NP
	Series	Series	Series	or		Series	Series	Series	or
	Stainless	Stainless	Stainless	ACE®		Stainless	Stainless	Stainless	ACE®
Copper Carbonate	TR	TR	TR	NR	Lactic Acid				
Copper Chloride					70°F	SR	TR	SR	NR
70°F	PR	PR	PR	NR	150°F	PR	PR	PR	NR
Boiling	NR	NR	NR	NR	Lard	TR	TR		NR
Copper Cyanide	TR	TR	TR	NR	Lead, Molten, 1200°F	SR	SR	PR	NR
Copper Nitrate	TR	TR	TR	NR	Linseed Oil	SR	TR	SR	NR
Copper Sulfate	TR	TR	TR	NR	Lye (Sodium or Potassium				
Creosote	TR	TR	TR	NR	Hydroxide)				
Cyanogen Gas	TR	TR		NR	70°F	TR	TR	TR	NR
Dichloro-ethane (Ethylidene					Boiling	SR	SR	SR	NR
Chloride, Ethylene Chloride,					Lysol	TR	TR	PR	NR
Dutch Liquor)	TR	TR		NR	Magnesium Chloride				
Dyewood Liquor	TR	TR		NR	70°F	SR	SR	SR	NR
Epsom Salts (Magnesium Sulfate)	TR	TR	SR	NR	Hot	PR	PR	PR	NR
Ether	TR	TR	TR	NR	Magnesium Oxychloride	PR	PR		NR
Ferric Hydroxide	TR	TR	TR	NR	Magnesium Sulfate (Epsom Salt)	TR	TR	SR	NR
Ferric Chloride	PR	PR	PR	NR	Malic Acid	TR	TR	SR	NR
Ferric Nitrate	TR	TR	TR	NR	Manganese Chloride	TR	TR		NR
Ferric or Ferrous Sulfate	SR	SR	SR	NR	Marsh Gas (Illuminating Gas)	TR	TR		NR
Formaldehyde (Formalin)	TR	TR	TR	NR	Mash, Hot	TR	TR		NR
Formic Acid	PR	SR	PR	NR	Mayonnaise	TR	SR	PR	NR
Fruit Juices	SR	TR	PR	NR	Mercury	TR	TR		NR
Fuel Oil	TR	TR		NR	Methyl Aldehyde	TR	TR		NR
Fuel Oil Containing Sulfuric Acid	PR	PR		NR	Milk-Sweet or Sour	TR	TR	TR	NR
Gallic Acid	TR	TR	TR	NR	Mine Water, Acid	TR	TR	TR	NR
Gasoline	TR	TR	TR	NR	Mixed Acids				
Glauber's Salt (Sodium Sulfate)	TR	TR	TR	NR	a. 50% H ₂ SO ₄ 50% HNO ₃				
Glue acidified	SR	SR		NR	70°F	SR	SR	SR	NR
Glycerine	TR	TR	TR	NR	Boiling	PR	PR	PR	NR
Grape Juice	SR	TR	TR	NR	b. 75% H ₂ SO ₄ 25% HNO ₃				
Gypsum (Calcium Sulfate)	TR	TR		NR	70°F	SR	SR	SR	NR
Hydrogen Peroxide	SR	SR	SR	NR	Boiling	PR	PR	PR	NR
Hydrobromic Acid	PR	PR	PR	NR	c. 5% H ₂ SO ₄ 5% HNO ₃				
Hydrochloric Acid (Muriatic)	ND	DD.	DD	ND	80% H ₂ 0	0.0	OD	0.0	NID
70°F	NR	PR	PR	NR	70°F	SR	SR	SR	NR
Boiling	NR	NR	NR	NR	Boiling	SR	SR		NR
Fumes-70°F	NR	PR	PR	NR	d. Chromic and Sulfuric	PR	PR		NR
Hydrocyanic Acid (Prussic Acid)	TR PR	TR PR	PR 	NR	Molasses Mustard (Propered)	TR TR	TR TR	NR	NR NR
Hydrofluoric Acid Fumes Hydrafluosilic Acid	PR PR	PR PR		NR NR	Mustard (Prepared) Naphtha, Pure or Crude	TR	TR	TR	NR
Hydrofluosilic Acid Fumes	rn NR	rn NR	NR	NR	Nickel Chloride	SR	SR	IN	NR
Hyposulfite of Soda (Hypo,	INU	INU	INU	INU	Nickel Sulfate	on TR	TR		NR
Sodium Thiosulfate)	TR	TR	SR	NR	Nitre (Potassium Nitrate)	TR	TR	TR	NR
Hydrogen Sulfide	III	111	ON	INIT	Nitric Acid	III	111	111	INIT
Dry	TR	TR		NR	70°F	SR	TR	TR	NR
Moist, H ₂ SO, Present	NR	PR		NR	Concentrated, Boiling	SR	SR	NR	NR
Inks	INIL	1.11		INIT	Fuming, Concentrated, Boiling	PR	PR	NR	NR
Alkaline	TR	TR		NR	Nitrous Acid	SR	TR	SR	NR
Acid	SR	SR		NR	Oleic Acid	TR	SR	SR	NR
lodine	Oil	OIT		IVII	Oils, Mineral or Vegetable	111	OII	OIT	INIT
Dry	NR	TR		NR	Refined	TR	TR	TR	NR
Moist	NR	NR	NR	NR	Crude	SR	SR	SR	NR
lodotorm	TR	TR		NR	Oxalic Acid	PR	PR	SR	NR
Kerosene	TR	TR	TR	NR	Paraffin	TR	TR	TR	NR
1 101 000110	TR	SR	SR	NR	Phenol (Carbolic Acid)	TR	TR	TR	NR

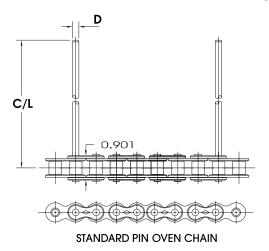
Chart continues on next page.

Corrosion Resistance of Stainless Steel Chains

Chart continued from previous page.

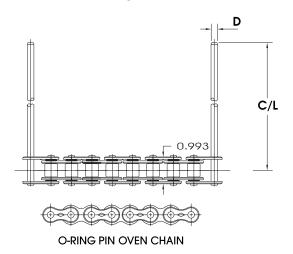
	AP & 600 Series Stainless	300 Series Stainless	400 Series Stainless	NP or ACE®		AP & 600 Series Stainless	300 Series Stainless	400 Series Stainless	NP or ACE®
Petroleum	TR	TR	TR	NR	Sodium Nitrate (Chili				
Petroleum Ether	TR	TR	TR	NR	Saltpeter, Soda Nitre)	TR	TR	TR	NR
Phosphoric Acid, Technical	TR	SR	PR	NR	Molten, 600°F	SR	SR		NR
Boiling Crude	NR	NR	NR	NR	Sodium Peroxide	TR	TR		NR
Picric Acid	TR	TR	TR	NR	Sodium Salicylate	TR	TR	TR	NR
Plaster of Paris (Sulfate of					Sodium Sulfate (Glauber's Salt)	TR	TR	TR	NR
Lime, Gypsum)	TR	TR		NR	Sodium Sulfide	SR	SR	SR	NR
Potash (Potassium Carbonate)	TR	TR	TR	NR	Sodium Thiosulfate (Hypo)	TR	TR	SR	NR
Potassium Bitartrate	SR	SR		NR	Stannic Chloride				
Potassium Bichromate	TR	TR	TR	NR	(Tetrachloride of Tin)	NR	NR	NR	NR
Potassium Bromide	SR	SR	PR	NR	Stannous Chloride	PR	PR	NR	NR
Potassium Chlorate	TR	TR	TR	NR	Starch	TR	TR		NR
Potassium Chloride	SR	SR	SR	NR	Strontium Hydroxide	TR	TR		NR
Potassium Cyanide	TR	TR	TR	NR	Strontium Nitrate	TR	TR		NR
Potassium Hydroxide					Sugar or Cane Juice	TR	TR		NR
Boiling	SR	SR	SR	NR	Sulfur, Dry				
Molten, 650°F	NR	NR	NR	NR	Molten, 260°F	TR	TR		NR
Potassium Hypochlorite	SR	SR		NR	Molten, 750°F	PR	PR		NR
Potassium Iodide	TR	TR		NR	Sulfur Monochloride				
Potassium Nitrate					(Rubber Vulcanizing)	TR	TR		NR
(Nitre, Saltpeter)	TR	TR	TR	NR	Sulfur Dioxide Gas, Moist	NR	SR		NR
Potassium Oxylate	TR	TR	SR	NR	Sulfurous Acid Water Solution				
Potassium Permanganate	TR	TR	TR	NR	Atmospheric Pressure	TR	TR		NR
Potassium Sulfate	TR	TR	TR	NR	Over 60 lbs. Pressure	PR	PR		NR
Potassium Sulfide	TR	TR		NR	Sulfuric Acid				
Pyrogallic Acid	TR	TR	TR	NR	70°F	SR	SR		NR
Prussic Acid					Boiling	NR	NR	NR	NR
(Hydrocyanic Acid)	TR	TR	PR	NR	Fuming	PR	PR		NR
Quinine Sulfate	TR	TR	SR	NR	Vapor (Battery Room)	SR	SR		NR
Quinine Bisulfate	SR	SR	PR	NR	Tannic Acid	TR	TR	SR	NR
Rosin, Molten	TR	TR	TR	NR	Tanning Liquor	TR	TR		NR
Salt (Sodium Chloride, Salt Brine)					Tartaric Acid	TR	TR	SR	NR
70°F	SR	SR	PR	NR	Tetrachloride of Tin	NR	NR	NR	NR
150°F	SR	SR	PR	NR	Tin, Molten, 1100°F	NR	NR	NR	NR
Sea Water	SR	SR	PR	NR	Trichloroethylene	SR	SR	SR	NR
Sewage, Sulfuric Acid Present	SR	SR		NR	Uric Acid	TR	TR	TR	NR
Silver Bromide	SR	SR	SR	NR	Varnish	TR	TR TR	TR TR	NR
Silver Nitrate	TR TR	TR TR	TR TR	NR NR	Vegetables	TR TR	TR	PR	NR NR
Soda Ash (Sodium Carbonate) Sodium Acetate	TR	TR	TR	NR NR	Vinegar (Acetic Acid) Whiskey	TR	TR		NR NR
		TR	TR	NR	Wood Pulp	TR	TR		NR
Sodium Bicarbonate (Baking Soda) Sodium Bisulfate, Dilute	TR	TR		NR	Yeast	TR	TR		NR
Sodium Bisulfate	TR	TR		NR	Zinc, Molten, 1100°F	NR	NR	NR	NR
Sodium Citrate	TR	TR	TR	NR	Zinc, Molteri, 1700 1	INII	INII	INII	INII
Sodium Chlorate	TR	TR	TR	NR	100°F	TR	TR	PR	NR
Sodium Chloride (Salt, Salt Brine)	111	111	111	INIT	Boiling	PR	PR	FIN	NR
70°F	SR	SR	PR	NR	Zinc Cyanide	TR	TR		NR
150°F	SR	SR	PR	NR	Zinc Oyanide Zinc Nitrate	TR	TR		NR
Sodium Cyanide	TR	TR		NR	Zinc Sulfate (White Vitriol)	SR	TR	TR	NR
Sodium Fluoride	SR	SR	SR	NR	Zirio Ganato (VVIIIto VIIIIO)	OIT	111		1 41 1
Sodium Hydroxide	511	511	OIT	1 11 1					
70°F	TR	TR	TR	NR					
Molten, 600°F	SR	SR		NR					
Sodium Hypochlorite	SR	SR	PR	NR					
Slightly Alkaline	TR	TR		NR					
Sodium Perchlorate	NR	TR		NR					
Sodium Hyposulfite (Hypo)	TR	TR	SR	NR					

www.diamondchain.com


SPECIAL APPLICATION CHAIN

Chain Descriptions and Dimensions

Pin Oven Chain

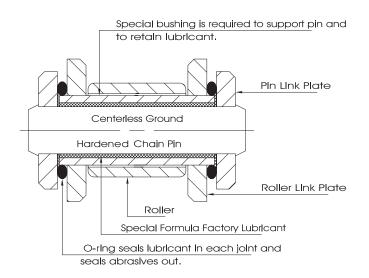

Long lasting, true running, high quality Pin Oven chain is critical for two-piece metal decorating operations that transfer and cure literally thousands of cans per minute. Diamond Chain is the world leader, producing the highest quality and best performing chain for this important and very demanding application. Depending upon your needs, we offer two styles of base chain that can help you to be the most productive and cost effective.

Standard Pin Oven Chain: Our Standard Pin Oven chain begins its life as ³/₄" pitch ANSI chain but that's where the "standard" part ends. We improve this chain's ability to perform in the harshest of environments by providing the components with the same superior qualities as our industrial drive chains such as: raw material selection and closely controlled heat treatment. Then we incorporate some additional clearances to accommodate the high temperatures of the drying ovens and allow more access for lubricant to enter the critical pin/bushing joint.

RING LEADER® O-ring Pin Oven Chain: High temperatures, contaminants and higher line speeds place ever increasing demands on Pin Oven chain. Malfunctioning or rapidly wearing Pin Oven chain can be very costly due to replacement cost, downtime, and lost production.

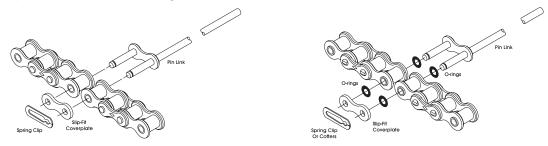
Now there is an Pin Oven chain that may make all others obsolete... Diamond RING LEADER O-ring Pin Oven chain, a special version of Diamond's industrial RING LEADER O-ring chain.

Chain Descriptions and Dimensions



RING LEADER® O-ring Pin Oven chain resulted from state-of-the-art Diamond engineering and is specially adapted for use in the high temperature atmosphere of decorating ovens. Consistent lubrication in each chain joint, along with Diamond's O-ring technology, allows O-ring Pin Oven chain to resist contaminants, run with less vibration and achieve longer life than standard chain.

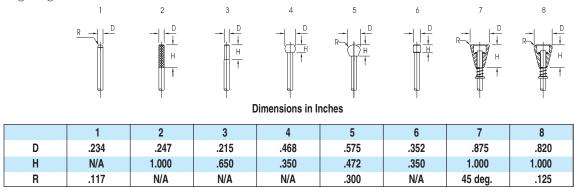
The same through-pin design that has proven superior in our standard Pin Oven chains makes for smoother running with less vibration even at high line speeds. And because O-ring Pin Oven chain wears more evenly and consistently you'll experience less downtime, fewer wrecks, fewer jams and more consistent production capacity.


Diamond O-ring Pin Oven chain employs specially compounded O-rings that seal out contaminants and seal in a lubricant that functions at chain temperatures up to 450°F. The consistent, sealed-in lubrication in RING LEADER O-ring Pin Oven chain means less external lubrication need be applied which can reduce the chance of can contamination from excess lubrication.

Note: When using O-ring Pin Oven chain for the first time it is important to remove or reposition cleaning devices such as wire brushes so they do not damage the O-rings.

Chain Descriptions and Dimensions

Extended pins: Diamond chains are designed so the carrier pins are the actual chain pins, not just an add-on attachment. This "through pin" design assures the user that the chain is of the highest strength and integrity. All Pin Oven chains are normally assembled with through-hardened medium carbon (bendable) extended carrier pins, but stainless steel or case-hardened low carbon (break away) pins are also available upon request. Standard bendable pins are heat treated to produce a tough, ductile pin, capable of withstanding incidental contact with jammed product or interference with machine framework. If the obstruction is minor and the extended pins become bent they can be easily straightened back to their original position in a matter of seconds and production is back on line. For those rare occasions where the obstruction is significant enough to break the pins, the failed joint can be replaced using a repair link shown below.

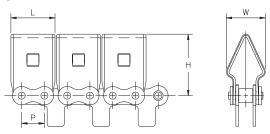


STANDARD PIN OVEN CHAIN

RING LEADER O-RING PIN OVEN CHAIN

In fact, we construct our chains so well that we've even omitted the sidemash on these chains so that if there is a need to repair a link, you won't even need to grind a pin. Just remove the air pressure from the tension device, clamp the chain in position, use a pin extractor to remove the failed pin link and install the repair link just like a normal connecting link. Reverse the procedure with the clamp and line pressure and begin production. The strength, integrity and smoother operating characteristics of our through pin design will make themselves apparent early on in the chain's service life.

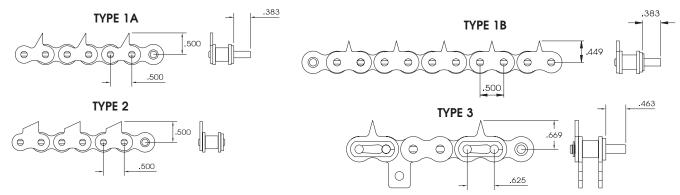
Tips and pin extensions: At Diamond, we learned a long time ago that there are a lot of optional tips and pin extensions that users like. To date, we've produced dozens of different combinations. The most common extension/tip combination is our spring-loaded pin tip assembled with a side plate to end-of-tip dimension of seven inches. But that's not to say that your oven or the cans you're producing don't need something a little different. And if that's the case, let us know. We know how important your particular configuration is and we'll certainly do whatever we can to get it to you. The following table shows the most common tips that are currently available. Depending upon the design, the tips can be manufactured from steel, aluminum, heat stabilized nylon, or high temperature PEEK™. The tip's design, material, and pin extension of your choice can be combined to provide you with the optimum chain for your specific application. If your tip isn't here, then give our application engineers a call and we'll get right to work.


Ordering instructions: Use the above drawing showing available tips and specify whether Standard or RING LEADER base chain is desired, type of pin material (bendable, breakable or stainless), type of tip configuration and the extension from the *centerline* of the chain to the end of the pin including the tip.

Chain Descriptions and Dimensions

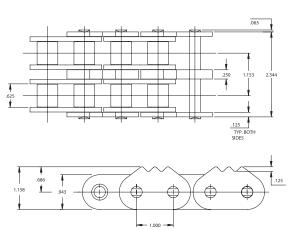
Bindery Chain

Diamond's Bindery chains are specifically designed for long life and smooth operations in the book binding industry. These #40 base chains are used in the saddle binding machinery to convey sorted and collated book pages for stitching and trimming. The specific book's size is easily accommodated by inserting the user's attachments into the square holes of the "saddle lug."



Dimensions in Inches

Туре	Р	L	н	W
1	.500	.988	1.354	.858
2	.500	.990	1.310	.819


Plastic Film Feeder Chain

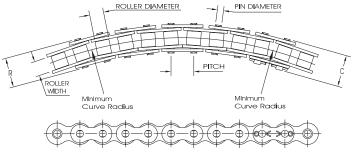
These special chains are designed for thermoforming applications and unusual conveying applications such as creating polystyrene plates, shrink wrap, blister packs and many other plastic items. The chain features precise, pointed link plates combined with extended pins or straight attachments (for additional rigidity in operation) which make them ideal for conveying plastic film into thermoforming operations. Several models are available for your conveying needs.

Serrated Top Chain

Serrated top chains are designed for lumber industry applications such as edge finishing. This chain features specially designed link plates to maximize grip while minimizing wood damage. When lubricated properly, Diamond Serrated Top chain offers superior performance, longer service life and reduced downtime due to elongation and fatigue failures. Serrated Top chain 80-2 is stocked and offers features such as double thickness serrated top centerplates for shock loading advantages and superior chain lubricant for smoother running and tracking. Single and other multiple strand versions may be ordered to meet your conveying needs. Our engineering staff can help determine the Diamond chain that best suits your operating conditions of frequency and depth of shock loading, as well as abrasion factors, temperature and humidity factors.

www.diamondchain.com

SPECIAL APPLICATION CHAIN


Chain Descriptions and Dimensions

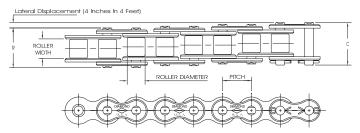
Additional Clearance Chain

Diamond produces two types of chain specifically designed to allow for lateral deviations that standard chains can't handle. Depending upon the application, either of these should be guite suitable.

POWER CURVE® Chain

This chain is manufactured using a pin which is both smaller in diameter and slightly longer than its Standard Series version. This design allows for extra clearance between both the pin and the bushing and in overall chain width as well.

Dimensions in Inches and Pounds


Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Min. Lateral Radius	Weight Per Foot	Average Tensile Strength
40LG	1/2	⁵ / ₁₆	.312	.136	.060	.77	.69	14	.39	2400
50LG	5/8	3/8	.400	.172	.080	.90	.86	16	.66	4600
60LG	3/4	1/2	.469	.200	.094	1.14	1.07	22	.94	6100
80LG	1	5/8	.625	.281	.125	1.47	1.35	36	1.60	11500

Consult Diamond for standard attachment availability.

TUF-FLEX® Chain

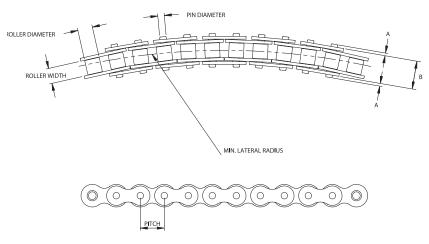
TUF-FLEX chain is designed to handle shaft or sprocket misalignment more than lateral turns. TUF-FLEX chains can handle up to four inches of lateral displacement in every four feet of chain length and up to eight degrees of axial twist.

TUF-FLEX is a rugged power transmission chain especially engineered to provide extra durability and unusual flexibility to meet the strenuous service demanded by heavy-duty construction machinery.

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	Weight Per Foot	Average Tensile Strength
120-C	1 ¹ / ₂	1	.875	.437	.187	2.16	2.02	3.69	34000
140-C	13/4	1	1.000	.500	.219	2.33	2.16	5.00	46000
160-HC	2	1 ¹ / ₄	1.125	.562	.281	2.86	2.68	7.09	70000
200-C	2 ¹ / ₂	1 ¹ / ₂	1.562	.781	.312	3.45	3.14	10.65	95000

Chain Descriptions and Dimensions

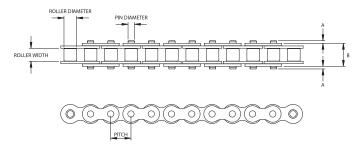


Straight Running and Side-Flexing Roller Chain

Base chains are designed with specially extended pins to retain plastic "snap on" flat top plates. Diamond offers chains for both straight running and side-flexing applications. These chains can be used with standard ASME/ANSI 40 and ASME/ANSI 60 sprockets. Chains are available both in carbon steel and stainless steel material.

Note: Diamond does not offer the plastic flat top plates.

#43 SB and #63 SB Side-Flexing Roller Chain For Plastic "Snap On" Flat Top Chains



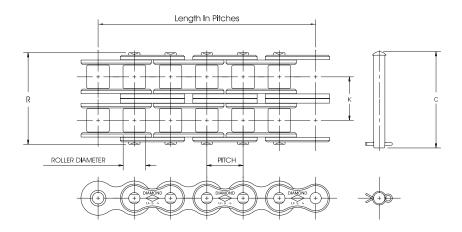
Dimensions in Inches and Pounds

Diamone Numbe		Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	A	В	Min. Lateral Radius	Weight Per Foot	Average Tensile Strength
43 SE	1/2	5/16	.312	.136	.060	.056	.588	14	.390	2400
63 SE	3/4	1/2	.469	.200	.094	.120	.900	22	.940	6100

Chain is also available in stainless steel. Diamond 43 SB SS and 63 SB SS.

#43 and #63 Straight Running Roller Chain For Plastic "Snap On" Plastic Chains

Dimensions in Inches and Pounds


Diamond Number	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	A	В	Weight Per Foot	Average Tensile Strength
43	1/2	5/16	.312	.156	.060	.065	.568	.410	4000
63	3/4	1/2	.469	.234	.094	.105	.898	.990	8500

Chain is also available in stainless steel. Diamond 43 SS and 63 SS.

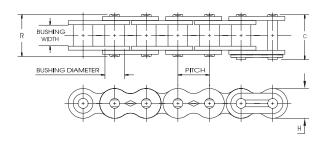
Chain Descriptions and Dimensions

Coupling Chain

These chains are specifically designed to work in concert with drive couplings to provide near-seamless power transmission. The chain's file-hard components develop a high-capacity unit durable enough to deliver long after other chains fail.

Dimensions in Inches and Pounds

Diamond Number	Pitch	Roller Width	Roller Diameter	С	R	K	Length Pitches	Weight Per Chain
D4012	1/2	0.312	0.312	1.297	1.24	0.566	12	0.41
D4016	1/2	0.312	0.312	1.297	1.24	0.566	16	0.55
D5016	5/8	0.375	0.400	1.592	1.55	0.713	16	1.12
D5018	5/8	0.375	0.400	1.592	1.55	0.713	18	1.26
D6018	3/4	0.500	0.469	1.980	1.94	0.897	18	2.16
D6020	3/4	0.500	0.469	1.980	1.94	0.897	20	2.40
D6022	3/4	0.500	0.469	1.980	1.94	0.897	22	2.64
D8018	1	0.625	0.625	2.567	2.47	1.153	18	5.00
D8020	1	0.625	0.625	2.567	2.47	1.153	20	5.56
D10018	1 ¹ / ₄	0.750	0.750	3.162	3.02	1.408	18	9.24
D10020	1 1/4	0.750	0.750	3.162	3.02	1.408	20	10.30
D12018	1 ¹ / ₂	1.000	0.875	3.977	3.79	1.789	18	16.20
D12022	1 ¹ / ₂	1.000	0.875	3.977	3.79	1.789	22	19.80


Chain Descriptions and Dimensions

Micropitch® Chain

Micropitch chain, originally developed for use in electronic equipment for the aircraft industry, is made using standard bushing type construction which offers a large joint bearing area. This larger area permits greater loads and speeds. Micropitch chain is constructed entirely of non-magnetic stainless steel and is well suited for precision applications such as instrumentation devices and printers/plotters.

Micropitch chain is applied on the basis of maximum working loads imposed in the drive. For chain speed less than 100 feet per minute, maximum working load should not exceed 20 pounds. For speeds greater than 100 feet per minute, the maximum working load should be reduced depending upon the specifics of the drive. As a general rule, working loads should not exceed 12 pounds for chain speed greater than 500 feet per minute. Contact Diamond's applications engineering department for more information.

Dimensions in Inches and Pounds

Diamond Number	Pitch Inches	Bushing Width	Bushing Diameter	Pin Diameter	Link Plate Thickness	Н	С	R	Average Tensile Strength	
47SS	.147	.072	.090	.062	.015	.138	.250	.220	180	

Powersports Chain

Diamond's Powersports chains are designed to meet the individual needs of the powersports enthusiast for ATVs, go-karts, motorcycles and snowmobiles. Multi-Service chains, Duralube® chains and RING LEADER® O-ring chains each offer specific functional advantages for your street, farm, track or trail applications.

MULTI-SERVICE chains – though referred to as standard chain – are anything but. Multi-Service chains offer Diamond's superior manufacturing parts processing technology which includes material selection, precise component fabrication, exacting heat treatment and assembly techniques.

DURALUBE® chains eliminate "hit or miss" lubrication. This chain is constructed using a one-piece powdered metal bushing/roller combination which has lubricant drawn in under vacuum. In service, this lubricant is released and provides supplemental lubrication to the pin/bushing joint between regularly scheduled maintenance.

RING LEADER® O-ring chains are top of the line chains offering allowable working loads that provide extra load carrying capability and up to four times the service life of regular chains. O-ring lubrication system seals in lubricant and seals out foreign contaminants. Appearance options on some models include:

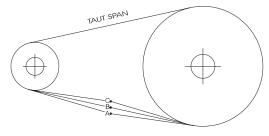
Brass Plated chains for the flashy high-end "gold look" shine and rust resistant finish. **Nickel Plated** chains for the classy "chrome or silver look" shine and rust resistant finish. **Standard** steel chains for the "back to basics look."

Chain Descriptions and Dimensions

PowerSports Chain

Dimensions in Inches and Pounds

Diamond Number	Plating	Pitch Inches	Roller Width	Roller Diameter	Pin Diameter	Link Plate Thickness	С	R	K	Weight Per Foot	Average Tensile Strength
35MS		3/8	3/16	*.200	.141	.050	.56	.50		.210	2000
35MS BR	Brass	3/8	3/16	*.200	.141	.050	.56	.50		.210	2000
35-2MS		3/8	3/16	*.200	.141	.050	.96	.90	.399	.450	4200
35-3**		3/8	3/16	*.200	.141	.050	1.36	1.31	.399	.770	6300
41MS		1/2	1/4	.306	.141	.050	.65	.57		.260	2400
40 DL		1/2	⁵ / ₁₆	.312	.156	.060	.72	.67		.400	3300
40MS		1/2	⁵ / ₁₆	.312	.156	.060	.72	.67		.410	4000
428MS		1/2	⁵ /16	.335	.174	.060	.72	.67		.430	4200
428-2		1/2	⁵ / ₁₆	.335	.174	.060	1.29	1.24	.566	.880	8400
520MS		5/8	1/4	.400	.200	.080	.77	.71		.590	6600
520H	Brass	5/8	1/4	.400	.214	.094	.80	.74		.820	9300
520XLO		5/8	1/4	.400	.214	.094	.89	.83		.850	9300
520XLO NI	Nickel	5/8	1/4	.400	.214	.094	.89	.83		.860	9300
520XLO BP	Brass	5/8	1/4	.400	.214	.094	.89	.83		.860	9300
530MS		⁵ /8	3/8	.400	.200	.080	.89	.83		.680	6600
530ENP	Nickel	5/8	3/8	.400	.200	.080	.89	.83		.690	6600
530BP	Brass	5/8	3/8	.400	.200	.080	.89	.83		.680	6600
530DL		5/8	3/8	.400	.200	.086	.89	.83		.650	6600
530XLO		5/8	3/8	.400	.214	.094	1.02	.96		.930	9300
530XLO BP	Brass	5/8	3/8	.400	.214	.094	1.02	.96		.930	9300
630MS		3/4	3/8	.469	.234	.094	.98	.91		.910	8500
630BP	Brass	3/4	3/8	.469	.234	.094	.98	.91		.910	8500


^{*} These chains are rollerless - dimension shown is bushing diameter.

Maintenance and Lubrication

Diamond exercises rigid controls and surveillance throughout production to ensure uniformity of all component parts. Of course, no matter how superior a roller chain, its full potential will not be realized if it's not properly installed and maintained.

Tensioning

If the chain is too tight or too loose, service life will suffer. A chain that is too tight creates unnecessary wear. A chain that is too slack can easily top the sprocket teeth and quickly cause a failure. Consult powersports equipment manufacturer's manual for proper tensioning and mid-span movement.

MID-SPAN MOVEMENT

Cleaning and Re-lubrication

Perhaps the largest contributor to shortened chain life is inadequate lubrication. All working parts of a chain should be lubricated uniformly. The use of the highest viscosity oil that allows for flow between the link plates and coats pin-bushing areas will normally provide the greatest wear resistance. Clean and lubricate chain periodically as riding situations warrant.

^{**} Chain uses oval contour sideplates and is supplied riveted endless.

Chain Descriptions and Dimensions

Can't find a standard attachment to fit your needs? Give us a call and we'll design one for you. We've designed literally thousands of attachments over our 100-year history and we're more than happy to design one to fit your needs. In fact, some of our stock attachments were born from custom orders just like yours.

Diamond custom-designs chains to fit your exact needs. First, we search through our vast collection of designs to see if one currently exists that satisfies your requirements. Using or adapting an existing design not only improves economy, but it also increases our responsiveness to your needs. If we can't find an existing design that will work, we'll design one that will. Then we add your design to our list so if you ever need to re-order, the design is ready and waiting.

For every custom order our application and design engineers are involved from the very beginning. These engineers review the application, propose solutions and then monitor the chain through its design and production. They'll even advise you of any special considerations and maintenance procedures to make sure your custom chain is one of the longest lasting chains you own.

To make the custom-design process easier, the following pages display dozens of attachments that may be suitable for your application. Use these designs as a starting point and look for features, or the exact attachment, that will satisfy your requirements. When designing or specifying attachment chains, consider the following information to avoid problems with either installation or performance:

Standard Attachments: Standard attachments described in the standard attachment section of this guide are normally much less expensive than special designs.

Link Plate Location: Attachments are normally less expensive when assembled on the pin link rather than on the roller link.

Modifications: Attachment link plates are specifically designed and heat treated to permit further operations by the user such as drilling, reaming, and tapping if desired. At no time should attachment links be modified by welding because the heat applied can adversely affect the heat treatment of the steel, resulting in either reduced performance or failure.

Extended Pins: Extended pins, made from medium carbon steel, are specially heat treated for ductility and toughness and can be easily assembled at virtually any spacing. It is important to note that if pairs of extended pins are specified, they must be located in a common pin link. In some applications this may require the use of an offset in the cycle.

Diamond does not recommend using "shouldered pins." They are generally expensive to manufacture and can often compromise quality due to high stress concentrations at the point where diameters change. Additions of sleeves or bearings on the extended pins will often yield a more dependable design and at a lower cost.

Dimensions in Inches

Chain Size	Hole Diameter	Screw Size	Screw Diameter
25	.102	#3	.099
35	.094	#2	.086
40	.125	#5	.125
41	.125	#5	.125
50	.203	#10	.190
60	.203	#10	.190
80	.250	1/4	.250
100	.312	⁵ ⁄ ₁₆	.312
120	.375	3/8	.375
140	.438	⁷ ⁄ ₁₆	.438
160	.500	1/2	.500

Dimensions in Inches

Chain Size	Hole Diameter*	Screw Size	Screw Diameter
C2040	.125	# 5	.125
C2050	.203	#10	.190
C2060H	.203	#10	.190
C2080H	.266	1/4	.250
C2100H	.328	⁵ ⁄ ₁₆	.312
C2120H	.391	3/8	.375
C2160H	.516	1/2	.500

*Straight, one hole attachments have larger diameters than shown. Refer to Double-Pitch Straight and Bent Attachment tables for more detail.

Chain Descriptions and Dimensions

Attachment Hole Sizes: If your application requires a different attachment hole than shown in this section, please contact Diamond, as alternate lug holes may be available.

Assembly: While it is possible to purchase base chain or attachment components and construct an attachment chain, it is strongly recommended that chains be ordered and assembled at the factory to ensure the proper fit and alignment of all parts, along with any length or matching requirements.

Manufacturing Length Tolerance

ASME/ANSI defines the permissible length of an assembled section of roller chain. The allowable length tolerances vary from model to model and are also affected by the chain's construction, i.e., with or without attachments.

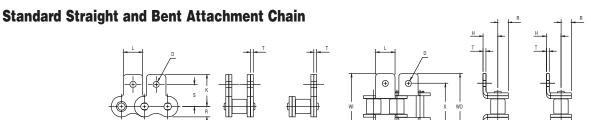
As an example, the assembled length tolerance for an ASME/ANSI one inch pitch chain (#80) is +.016"/-.000" per foot. When attachments are added to the chain's design, the tolerance for length expands to +.032"/-.000" per foot. This means that a section of #80 chain 12 pitches long (12" nominal) can measure as long as 12.016" but *no less than* 12.000." The same section of chain assembled with bent, straight, or extended pin attachments could measure as long as 12.032" but again, *no less than* 12.000."

Commonly, manufacturers strive to produce chain nearer to the nominal figure but the maximum allowable over length tolerance should always be considered when designing for take-ups and catenary chain sag. If the application requires, some design/assembly steps can be taken to direct the length of the chain toward the nominal; however, on a routine basis machine designs based on a nominal or specified chain length should be avoided.

Length Matching of Roller Chains

Many applications require two or more chains, normally with attachments, to run in parallel with "flights" joining the chains together forming a conveyor or transfer type system. In these cases it is critical to have the chains ordered as a set, matched for length and installed on the machinery with the same relationship to one another as when they were manufactured.

Diamond offers two degrees of matching for parallel operation: Class I and Class II.


Class I - A Class I match assures that the longest and the shortest chain in a given set will not vary in overall length by more than .006"/ft. Again using #80 chain as an example, the length of two #80 chains 120 pitches long will not vary by more than .060" in overall length (10ft. x .006"/ft. = .060"). The shortest could measure 120" + .000" (remember, no negative tolerance) and the longest could measure up to 120" + .060" and satisfy the Class I requirement. Class I matching is most often accomplished by assembling the chains from selected lots of component parts.

Class II - A Class II match is much more stringent and assures that the longest and the shortest chain in a given set will not vary in overall length by more than .002"/ft. Applying this new tolerance to the above example, the length of two #80 chains 120 pitches long will not vary by more than .020" in overall length (10ft. x .002"/ft. = .020"). The shortest could measure 120" + .000" and the longest could measure 120" + .020" and satisfy the requirement. Class II matching is quite difficult and requires some very unique procedures.

Differences - It is important to remember that matched chains still fall under the overall length limitations imposed by either ASME/ANSI or the manufacturer. Matching *does not* assure the user of chains with a finite overall length, only that the chains in the set have a controlled relationship to one another.

If you ever have any questions, give us a call. We're always glad to help.

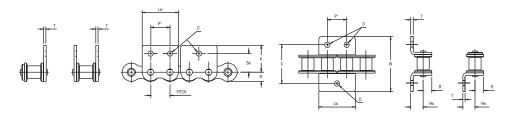
Chain Descriptions and Dimensions

Others	Diamond					
M-35, SA1	S1 (one hole)					
M-1, SK1	S2 (one hole)					

Dimensions in Inches

Others	Diamond
A 1	B1 (one hole)
K1	B2 (one hole)

ASME/ANSI Number	Pitch Inches	D	н	K	L	R Max.	s	Т	WI	wo	х
25	.250	.125	.180	.451	.218	.119	.308	.030	.781	.843	.562
35	.375	.102	.250	.577	.312	.178	.387	.050	1.125	1.125	.750
40	.500	.141	.312	.684	.375	.238	.489	.060	1.390	1.390	1.000
41	.500	.141	.282	.698	.375	.192	.482	.050	1.375	1.375	.937
50	.625	.203	.406	.895	.500	.297	.618	.080	1.812	1.812	1.250
60	.750	.203	.478	1.038	.625	.356	.716	.094	2.135	2.135	1.500
80	1.000	.266	.625	1.339	.750	.475	.968	.125	2.750	2.750	2.000
100	1.250	.343	.784	1.696	1.000	.594	1.233	.156	3.077	3.406	2.500
120	1.500	.386	.917	2.024	1.125	.713	1.424	.187	3.841	4.239	2.995
140	1.750	.448	1.127	2.445	1.375	.831	1.750	.220	4.361	4.826	3.500
160	2.000	.516	1.250	2.756	1.500	.950	2.007	.250	5.078	5.609	4.000


Above attachments available for mutiple strand chain.

Diamond

Wide Contour Straight and Bent Attachment Chain

Others

Diamond

WM-35 W	CS1 (one hole)	WM-1	WCS2 (d	one hole)			WA-1	WCB1 (on	e hole)	WK-1 WCB		2 (one hole)
WM-35-2 W	WM-35-2 WCS1 (two holes)		WCS2 (t	wo holes)	Dimensions in Inches		WA-2, A	A2 WCB1 (two	holes)	WK-2, K2 WCB		2 (two holes)
ASME/ANSI Number	Pitch Inches	D	Hw	K	Lw	Р	R Max.	Sw	Т	w		X
*35	.375	.125	.262	.577	.727	.375	.178	.399	.050	1.105		.750
*40	.500	.141	.326	.684	.946	.500	.238	.503	.060	1.366		1.000
*41	.500	.141	.282	.698	.878	.500	.192	.482	.050	1.372		.937
*50	.625	.203	.406	.895	1.211	.625	.297	.618	.080	1.807		1.250
*60	.750	.203	.478	1.038	1.420	.750	.356	.716	.094	2.135		1.500
*80	1.000	.266	.625	1.339	1.885	1.000	.475	.967	.125	2.750		2.000
*†100	1.250	.343	.784	1.696	2.362	1.250	.594	1.233	.156	3.408		2.500
*†120	1.500	.386	.917	2.023	2.836	1.500	.713	1.424	.187	4.239		2.995

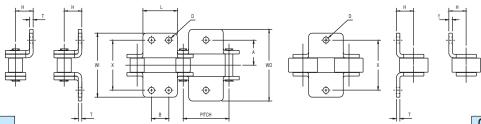
^{*} Attachment available on pin link plate only. † These items not available with 48-hour delivery.

Others

Others

Diamond

Diamond


Others

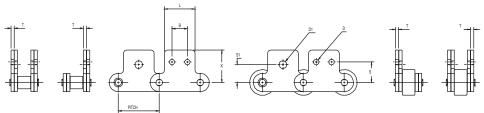
Chain Descriptions and Dimensions

Double-Pitch Bent Attachments

Oval Contour Link Plates Standard and Oversized Roller

Others	Diamond
A1	B1 (one hole)
A2	B1 (two holes)

Others	Diamond
K1	B2 (one hole)
K2	B2 (two holes)


Dimensions in Inches

Standard ASME/ANSI #	Roller Diam.	Pitch Inches	Α	В	D	н	L	Т	WI	wo	х	Large ASME/ANSI #	Roller Roller Diam.
*C2040	.312	1.00	.500	.375	.141	.359	.750	.060	1.350	1.483	1.000	C-2042	.625
*C2050	.400	1.25	.625	.469	.203	.453	.937	.080	1.692	1.863	1.250	C-2052	.750
*C2060H	.469	1.50	.844	.562	.203	.578	1.125	.125	2.171	2.446	1.688	C-2062H	.875
*C2080H	.625	2.00	1.094	.750	.266	.766	1.500	.156	2.792	3.125	2.188	C-2082H	1.125
*C2100H	.750	2.50	1.312	.937	.328	.922	1.875	.187	3.554	3.951	2.625	C-2102H	1.562
*C2120H	.875	3.00	1.562	1.125	.391	1.095	2.250	.219	4.318	4.782	3.125	C-2122H	1.750
*C2160H	1.125	4.00	2.063	1.500	.516	1.438	3.000	.281	5.520	6.116	4.125	C-2162H	2.250

^{*}Two attachment holes stock.
One attachment hole made-to-order.

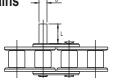
Double-Pitch Straight Attachments

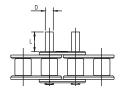
Oval Contour Link Plates Standard and Oversized Roller

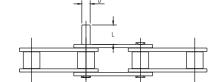
Others	Diamond						
M-35, SA1	S1 (one hole)						
M-35-2, SA2	S1 (two holes)						

۱	Others	Diamond						
	M-1, SK1	S2 (one hole)						
	M-2, SK2	S2 (two holes)						

Dimensions in Inches

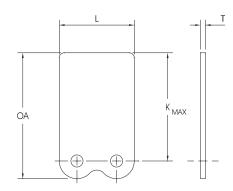

Standar	Standard Roller		With Two	o* Attachme	ent Holes				With Attachm	One ent Hole	Large l	Roller
ASME/ ANSI #	Roller Diam.	Pitch Inches	В	D	S	K	L	т	D1	S1	ASME/ ANSI #	Roller Diam.
*C2040	.312	1.00	.375	.141	.531	.773	.750	.060	.188	.438	C-2042	.625
*C2050	.400	1.25	.469	.203	.625	.971	.937	.080	.250	.563	C-2052	.750
*C2060H	.469	1.50	.562	.203	.750	1.203	1.125	.125	.329	.688	C-2062H	.875
*C2080H	.625	2.00	.750	.266	1.000	1.590	1.500	.156	.375	.875	C-2082H	1.125
*C2100H	.750	2.50	.937	.328	1.250	1.982	1.875	.187	.516	1.125	C-2102H	1.562
*C2120H	.875	3.00	1.125	.391	1.469	2.367	2.250	.219	.563	1.312	C-2122H	1.750
*C2160H	1.125	4.00	1.500	.516	2.000	3.090	3.000	.281	.750	1.750	C-2162H	2.250


^{*}Two attachment holes stock. One attachment hole made-to-order.


Chain Descriptions and Dimensions

Standard Extended Pins

For ASME/ANSI Standard Series Chains and Double-Pitch Conveyor Chains

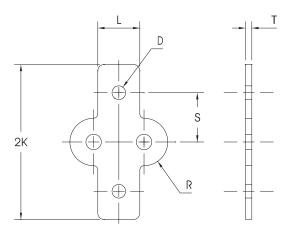


Others	Diamond
D1	E1 (one extended pin)
D3	E2 (two extended pins)

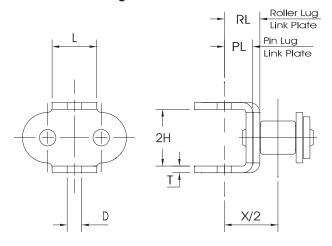
Dimensions in Inches

ASME/ ANSI #	Pitch Inches	D±.0005"	L±.010"	ASME/ ANSI#	Pitch Inches	D±.0005"	L±.010"	ASME/ANSI #	Pitch Inches	D±.0005"	L±.010"
35	.375	.141	.375	80	1.00	.312	.750	C-2040, C-2042	1.00	.156	.375
40	.500	.156	.383	100	1.25	.375	.937	C-2050, C-2052	1.25	.200	.468
41	.500	.141	.375	120	1.50	.437	1.125	C-2060H, C-2062H	1.50	.234	.562
50	.625	.200	.468	140	1.75	.500	1.312	C-2080H, C-2082H	2.00	.312	.750
60	.750	.234	.562	160	2.00	.562	1.500	C-2100H, C-2102H	2.50	.375	.937

Wide-Tall Lugs


Dimensions in Inches

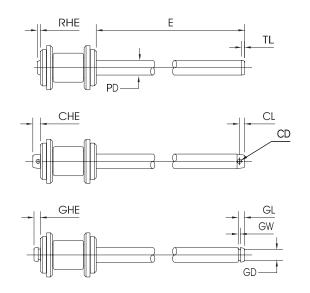
ASME/ANSI #	Pitch Inches	K (max.)	L	OA	Т
35	3/8	1.290	.713	1.459	.050
40	1/2	1.560	.971	1.796	.060
41	1/2	1.560	.878	1.749	.050
50	5%	1.810	1.209	2.103	.080
60	3/4	2.049	1.420	2.384	.094
80	1	2.485	1.885	2.930	.125
100	1¼	2.927	2.362	3.483	.156



Chain Descriptions and Dimensions

Double Straight Lugs

Double Bent Lugs


Dimensions in Inches

ASME/ ANSI #	Pitch Inches	D	2H	2K	L	PL	RL	R	S	Т	X/2
40	1/2	.133	.524	1.567	.375	.219	.281	.236	.502	.060	.500
41	1/2	.133	.453	1.478	.375	.237	.291	.189	.476	.050	.469
50	5%	.164	.660	1.962	.500	.268	.354	.293	.626	.080	.625
60	3/4	.203	.794	2.306	.625	.303	.401	.353	.733	.094	.750
80	1	.257	1.016	3.142	.750	.424	.556	.445	.991	.123	1.000
100	11/4	.320	1.265	3.905	1.000	.545	.710	.556	1.248	.156	1.250

Consult Diamond Chain for extended pitch chain, double straight and double bent attachment availabliity.

Chain Descriptions and Dimensions

Extended Pins

Standard Design Plain End Extended

Available Made-to-Order

Available Made-to-Order

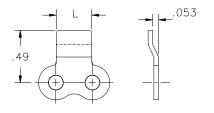
Medium Carbon Steel

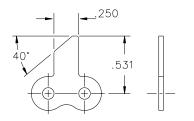
Dimensions in Inches

ASME/ANSI Number	Pitch Inches	CD	CHE	CL	E MAX.	E STD.	GD	GHE	GL	GW	PD	RHE	TL
25	1/4				.83	.250	.065	.055	.055	.027	.090	.022	.027
35	3/8	.060	.108	.078	2.56	.375	.105	.072	.072	.032	.141	.032	.029
40	1/2	.060	.108	.078	2.88	.383	.121	.083	.083	.034	.156	.032	.029
41	1/2	.060	.108	.078	2.50	.370	.108	.076	.076	.034	.141	.032	.029
50	5/8	.067	.116	.082	6.50	.468	.146	.096	.096	.036	.200	.040	.032
60	3/4	.067	.121	.084	10.00	.562	.171	.108	.108	.038	.234	.050	.042
80	1	.103	.182	.131	10.30	.750	.228	.134	.134	.040	.312	.063	.055
100	11/4	.115	.204	.132	10.00	.937					.375	.081	.079
120	1½	.127	.225	.153	16.00	1.125					.437	.085	.083
140	1¾	.141	.254	.168	13.80	1.312					.500	.099	.085
160	2	.157	.283	.189	11.63	1.500					.562	.105	.093
200	2½	.250	.450	.320	6.57	1.875					.781	.133	.120
C2060H	1½	.067	.121	.084	9.75	.562					.234	.050	.042
C2080H	2	.103	.182	.131	10.00	.750					.312	.063	.055

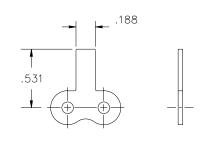
Stainless

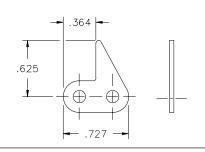
Dimensions in Inches

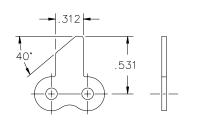

Diamond Number	Pitch Inches	CD	CHE	CL	E. MAX.	E. STD.	GD	GHE	GL	GW	PD	RHE	TL
25 SS	1/4				.52	.250	.064	.055	.055	.028	.090	.022	.016
35 SS	3/8	.052	.093	.067	.90	.375	.103	.076	.076	.034	.141	.032	.029
40 SS	1/2	.067	.112	.078	1.25	.383	.121	.083	.083	.034	.156	.032	.031
41 SS	1/2	.052	.093	.067	.85	.375	.103	.076	.076	.034	.141	.032	.029
50 SS	5%	.067	.112	.078	1.50	.468	.600	.096	.096	.036	.200	.040	.040
60 SS	3/4	.067	.121	.087	1.90	.562	.170	.102	.102	.035	.234	.051	.042
80 SS	1	.101	.182	.131	3.50	.750		.134			.312	.069	.065

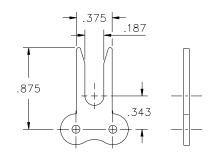

ANSI 35 3/8" PITCH .050 LINK PLATE THICKNESS UNLESS NOTED

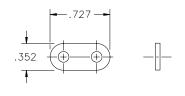
PART NO. 293063 L = .437 AVAILABLE ROLLER LINK PLATE

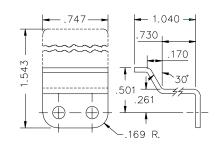

NOTE: OFFSET TO ALIGN WITH PIN LINK PLATE

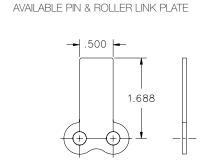

PART NO. 1913697 AVAILABLE PIN & ROLLER LINK PLATE


PART NO. 193064 AVAILABLE PIN LINK PLATE

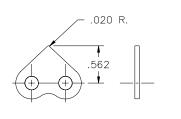

PART NO. 1912605 AVAILABLE PIN & ROLLER LINK PLATE


PART NO. 1913612 AVAILABLE PIN & ROLLER LINK PLATE

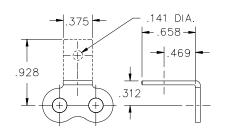

PART NO. 198139 AVAILABLE PIN & ROLLER LINK PLATE


PART NO. 2811330 AVAILABLE PIN & ROLLER LINK PLATE

PART NO. 1912623 AVAILABLE PIN LINK PLATE



ANSI 40 1/2" PITCH .060 LINK PLATE THICKNESS UNLESS NOTED

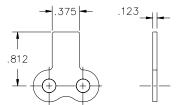


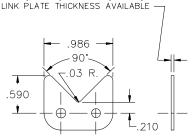
PART NO. 196347

PART NO. 193008 AVAILABLE PIN LINK PLATE

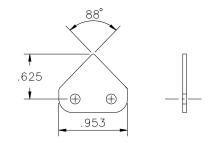
PART NO. 195696 AVAILABLE PIN LINK PLATE

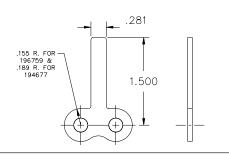
ANSI 40 1/2" PITCH .060 LINK PLATE THICKNESS UNLESS NOTED

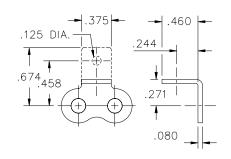

PART NO. 1910820 PART NO. 1911729 PART NO. 1913316 - RH or LH AVAILABLE PIN & ROLLER LINK PLATE AVAILABLE PIN & ROLLER LINK PLATE AVAILABLE PIN LINK PLATE .125 .156 .250 1.000 .906 .688 .236 R. PART NO. 1910560 PART NO. 1912756 PART NO. 195862 AVAILABLE PIN LINK PLATE AVAILABLE PIN LINK PLATE AVAILABLE PIN LINK PLATE **-** .949 **-**.186 .375 266 .688 25° .452 PART NO. 289302 PART NO. 194446 K = 1.500PART NO. 197306 AVAILABLE PIN & ROLLER LINK PLATE AVAILABLE PIN LINK PLATE PART NO. 1913210 K = 2.312 AVAILABLE PIN & ROLLER LINK PLATE 1.375 .102 .125 DIA 937 .500 PART NO. 195487 PART NO. 1912506 AVAILABLE PIN LINK PLATE AVAILABLE PIN LINK PLATE .125 DIA. .904 -500 .102 _12° 486.25 .937 .500


ANSI 41 1/2" PITCH .050 LINK PLATE THICKNESS UNLESS NOTED

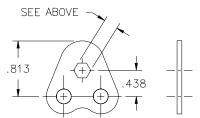
PART NO. 199973


AVAILABLE PIN LINK PLATE NOTE: LONGER PIN REQUIRED FOR THICKER LINK PLATE


PART NO. 194677 OR 196759 AVAILABLE PIN & ROLLER LINK PLATE .040 (NO. 65) OR .050 (NO. 41) LINK PLATE THICKNESS AVAILABLE -

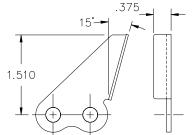

PART NO. 1913228 AVAILABLE PIN LINK PLATE

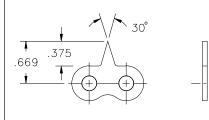
PART NO. 197283 AVAILABLE PIN LINK PLATE



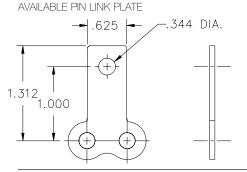
PART NO. 194691 AVAILABLE PIN LINK PLATE NOTE: LONGER PIN REQUIRED FOR THICKER LINK PLATE

ANSI 50 5/8" PITCH .080 LINK PLATE THICKNESS UNLESS NOTED

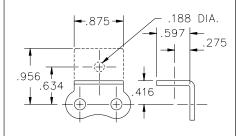

PART NO. 194230 (.315 ACROSS FLATS) AVAILABLE PIN LINK PLATE

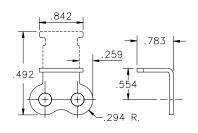

PART NO. 194830 AVAILABLE PIN LINK PLATE

NOTE: RIGHT OR LEFT HAND

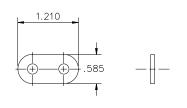


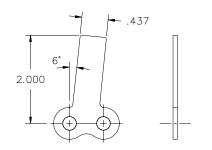
PART NO. 199309


AVAILABLE PIN LINK PLATE

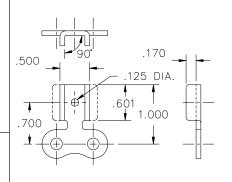

PART NO. 1910987

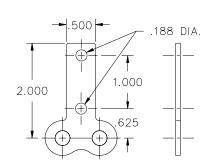
PART NO. 192029 AVAILABLE PIN LINK PLATE


PART NO. 1913400 AVAILABLE PIN LINK PLATE

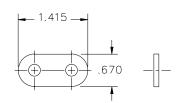

ANSI 50 5/8" PITCH .080 LINK PLATE THICKNESS UNLESS NOTED

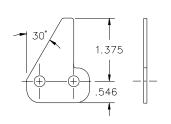
PART NO. 1913551


AVAILABLE PIN & ROLLER LINK PLATE

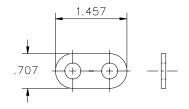

PART NO. 194017 AVAILABLE PIN & ROLLER LINK PLATE

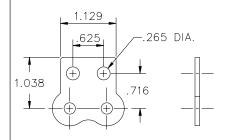
PART NO. 1912828 AVAILABLE PIN LINK PLATE


PART NO. 199384 AVAILABLE PIN & ROLLER LINK PLATE

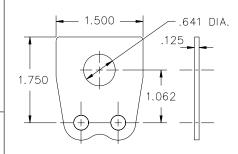

ANSI 60 3/4" PITCH .094 LINK PLATE THICKNESS UNLESS NOTED

PART NO. 182802


AVAILABLE PIN & ROLLER LINK PLATE


PART NO. 598699 AVAILABLE PIN & ROLLER LINK PLATE

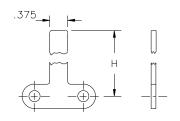
PART NO. 289918 AVAILABLE PIN & ROLLER LINK PLATE



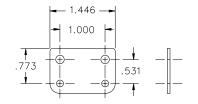
PART NO. 1613369 AVAILABLE PIN LINK PLATE

PART NO. 199588 AVAILABLE PIN LINK PLATE

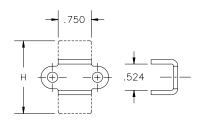
NOTE: LONGER PIN REQUIRED FOR THICKER LINK PLATE

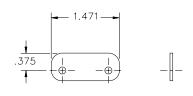


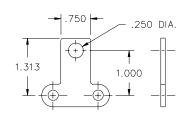
ANSI 80 1" PITCH .125 LINK PLATE THICKNESS UNLESS NOTED


PART NO. 5913242 AVAILABLE PIN LINK PLATE	PART NO. 1611028 AVAILABLE PIN LINK PLATE	PART NO. 184368 AVAILABLE PIN & ROLLER LINK PLATE
1.313	-2.250 - - 1.500395 DIA.	.187 194 DIA.
PART NO. 1913096 AVAILABLE PIN LINK PLATE	PART NO. 2913362 AVAILABLE ROLLER LINK PLATE	PART NO. 1915229 AVAILABLE PIN LINK PLATE
1.50 .261 DIA. 1.50 .424	1.500	1.158 1.943
PART NO. 198709 AVAILABLE PIN & ROLLER LINK PLAT		
.406 R. + + + + + + + + + + + + + + + + + +		

ANSI C-2040 1" PITCH (1/2" DOUBLE-PITCH) .060 LINK PLATE THICKNESS UNLESS NOTED

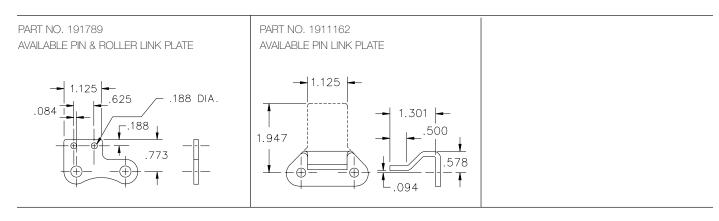

PART NO. 197781 H = 2.000 PART NO. 199460 H = 2.750AVAILABLE PIN & ROLLER LINK PLATE


PART NO. 163852 AVAILABLE PIN & ROLLER LINK PLATE

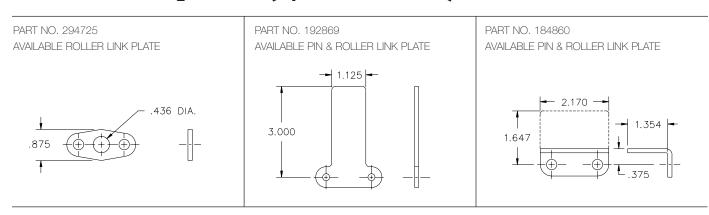

PART NO. 188653 H = 1.567 AVAILABLE PIN & ROLLER LINK PLATE

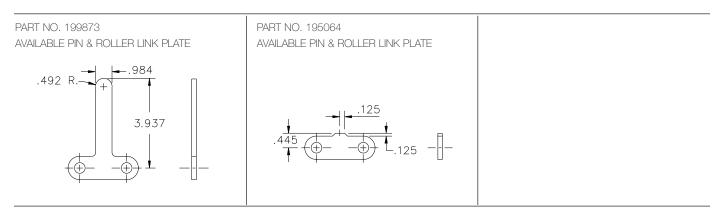
PART NO. 1912235 AVAILABLE PIN LINK PLATE

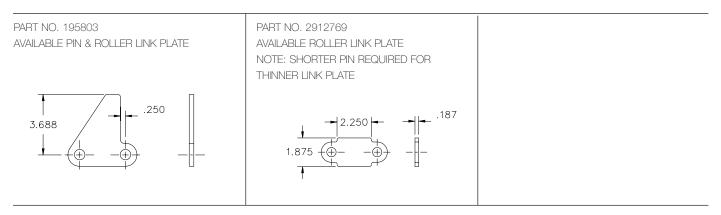
PART NO. 194060 AVAILABLE PIN LINK PLATE


ANSI C-2050 $1\frac{1}{4}$ " PITCH ($\frac{5}{8}$ " DOUBLE-PITCH) .080 link plate thickness unless noted

PART NO. 198195




ANSI C-2060 11/2" PITCH (3/4" DOUBLE-PITCH) .094 LINK PLATE THICKNESS UNLESS NOTED


ANSI C-2060H 11/2" PITCH (3/4" DOUBLE-PITCH) .125 LINK PLATE THICKNESS UNLESS NOTED

ANSI C-2080H 2" PITCH (1" DOUBLE-PITCH) .156 LINK PLATE THICKNESS UNLESS NOTED

ANSI C-2120H 3" PITCH (11/2" DOUBLE-PITCH) .219 LINK PLATE THICKNESS UNLESS NOTED

Standard Attachment Terminology	Other Manufacturers	Diamond Terminology	Description		
Single- and Double-Pitch Lugs	A1 A2 K1 K2 SA1, M-35 SA2, M-35-2 SK1, M-1 SK2, M-2	B1 one hole B1 two holes B2 one hole B2 two holes S1 one hole S1 two holes S2 one hole S2 two holes	Bent attachment, one side, one hole Bent attachment, one side, two holes Bent attachment, both sides, one hole Bent attachment, both sides, two holes Straight attachment, one side, one hole Straight attachment, one side, two holes Straight attachment, both sides, one hole Straight attachment, both sides, two holes		
Wide Contour Lugs WM-35 WM-35-2 WM-1 WM-2 WA-1 WA-2, A2 WK-1 WK-2, K2		WCS1 one hole WCS1 two holes WCS2 one hole WCS2 two holes WCB1 one hole WCB1 two holes WCB2 one hole WCB2 two holes	Wide contour, straight attachment, one side, one hole Wide contour, straight attachment, one side, two holes Wide contour, straight attachment, both sides, one hole Wide contour, straight attachment, both sides, two holes Wide contour, bent attachment, one side, one hole Wide contour, bent attachment, one side, two holes Wide contour, bent attachment, both sides, one hole Wide contour, bent attachment, both sides, two holes		
Extended Pins	D1 D3	E1 E2	One pin in link extended Both pins in link extended		

CHAIN TOOLS

Tool Descriptions and Dimensions

Important - Refer to safety instructions in Roller Chain Installation section prior to using these tools. When using chain tools, always wear safety glasses to protect your eyes.

Roller Chain Connecting Tool

CT35 or CT80 Instructions: Hook the two jaws into each end of the chain. Turn the screw clockwise to bring the two ends of chain almost together. Insert the connecting link and complete assembly of the connecting link. This tool was not made to stretch chain but simply made to hold chain.

CT80 CABLE Instructions: Place hooks on rollers past opposite side of link or links to be removed or replaced, then take up slack in the cable with a wrench until the chain between the hooks is relieved of tension. This will allow the removal of the link or links with a roller chain pin extractor. A new master or replacement link or links can then be inserted. Release the cable with the lock lever pawl and remove the tool.

CT35 Connecting Tool-Small

For use with ASME/ANSI 25 through 60H Roller chain. Enabling fast, easy replacement of broken links, this tool holds chain together in position leaving your hands free for working, not chain holding. This compact tool will save time and effort by allowing roller chain repair without removing it from the machine.

CT80 Connecting Tool-Large

For use with ASME/ANSI 80 through 240 Roller Chain single strand and also most conveyor and engineered chains with a width of 5/8" or wider between inside links. On multiple strand chains, a second connecting tool will aid in alignment of the chain.

CT80-CABLE Cable Connecting Tool-Large

For use with ASME/ANSI 80 through 240 Roller Chain single strand, multiple strand, double-pitch chain and also most conveyor and engineered chains with a width of 5/8" or wider between inside links. This tool was designed to hold the chain in place on the sprockets while being repaired.

For Chain Sizes	Model Number	Approx. Shipping Wt.
35 - 60H	CT 35	0.3 lb.
80 - 240	CT 80	2.0 lb.
80 - 240	CT 80-Cable	4.75 lb.

CHAIN TOOLS

Tool Descriptions and Dimensions

Important - Refer to safety instructions in Roller Chain Installation section prior to using these tools. When using chain tools, always wear safety glasses to protect your eyes.

Roller Chain Pin Extractor Tools

Instructions: Place jaws of tool over roller with push-out pin centered on chain pin. Tighten down by turning top handle clockwise until chain pin loosens, driving it partially through the link plate. Follow the same procedure on other pin of the same pin link. Return to original pin and force completely through pin plate. Do the same on second pin, freeing link plate from the pins. Remove disassembled pin link from the chain. It is recommended that "side-mashed or spun" pin heads be ground off flush with the pin link plate (prior to pin extraction) to insure that the chain bushing will not be damaged.

PE113 Pin Extractor-Small

For use with ASME/ANSI 25 through 60H Roller Chain. Take apart chain quickly and easily without hammers or punches. This quality hand tool is made in the USA using hardened steel parts for long lasting reliability.

PE135 Pin Extractor-Large

For use with ASME/ANSI 80-100H Roller Chain. (Pin extractor for ASME/ANSI 120 through 160 available as a special order item.) Take apart chain quickly and easily without hammers or punches. This quality hand tool is made in the USA using hardened steel parts for long lasting reliability.

PERE157 Pin Extractor-Extra Large

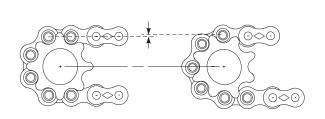
For use with ASME/ANSI 120-160 Roller Chain. Take apart chain quickly and easily without hammers or punches. This quality hand tool is made in the USA using hardened steel parts for long lasting reliability.

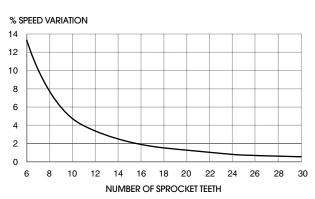
For Chain	Model	Description	Approx.
Sizes	Number		Shipping Wt.
25 - 60H	PE 113	Chain Pin Extractor	0.80 lb.
	PE 113 - 103	Replacement Tip Assembly	0.10 lb.
	PE 113 - 108	Replacement Tip	0.01 lb.
80 - 100H	PE 135	Chain Pin Extractor	2.80 lb.
	PE 135 - 108	Replacement Tip	0.01 lb.
120-160	PERE 157	Chain Pin Extractor	8.05 lb.

General Drive Considerations

One of the main advantages of the roller chain drive is its ability to perform well under widely varying conditions. Despite this ability, there are a number of rules of good design practice which, if considered early in the design process, will enable the user to obtain desirable results.

Basic dimensions and minimum ultimate tensile requirements for single-pitch, double-pitch and attachment roller chains are specified by various standards organizations worldwide. ASME/ANSI, The American Society of Mechanical Engineers and The American National Standards Institute, defines dimensions such as: pitch, roller width, roller diameter, link plate height, link plate thickness and pin diameter. The primary purpose of the standard is to ensure that manufacturers will produce chains and sub-assemblies that are similar dimensionally and therefore interchangeable. In addition, the standard does offer the user some assurance of quality by defining a minimum ultimate tensile strength for each model of chain. However, tensile strength is not always a valid method to differentiate one manufacturer's product from another. It is very important to remember that dimensional standardization does not define quality or performance characteristics.


Minimum Ultimate Tensile Strength: Minimum Ultimate Tensile Strength, MUTS, is the static load required to break the chain. Tensile strength values shown in this catalog are *not* allowable working loads. Load or tension applied to the chain in service should never exceed \% the of the UTS. If exceeding this value is necessary for a specific application, contact Diamond Chain. Warning! A roller chain should never be loaded above 50% of MUTS for even one cycle. Doing so will permanently damage the chain.


Allowable Working Load: Roller chains with equal tensile strengths can have very different working load capacities. Contrary to popular belief, there is no consistent relationship between a roller chain's working load capacity and its ultimate tensile strength. A chain with a higher tensile strength than a Diamond chain could have a much lower working load capacity.

Selecting Chain Size: There may be several suitable selections for any particular application. Loads, speeds, environment, cost, required service life or other factors will determine the final selection. Generally, the lowest cost drive will consist of a single strand chain of the smallest pitch that can accommodate the load. The speed and number of teeth of the smallest sprocket, most commonly the driver sprocket, also have an effect on the selection of chain size. As a rule, the smaller the pitch the higher the permissible operating speed.

Selecting Sprockets

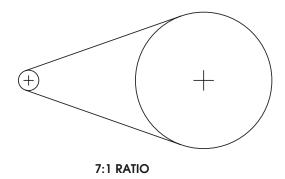
Small Sprocket: The smallest sprocket is usually the driver or input sprocket. As the chain enters and exits, it rises and falls as each pitch engages and disengages the sprockets.

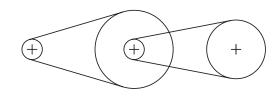
This movement, called chordal action, causes chain speed variations (drive roughness) that may be objectionable in some applications. These speed variations can normally be minimized by increasing the size of the sprockets, as shown.

General Drive Considerations

To minimize the negative effects of chordal action, the following are suggested guidelines for the minimum number of teeth in the smallest sprocket:

Slow Speed (Type A* lubrication region) 12 Teeth Medium Speed (Type B* lubrication region) 17 Teeth High Speed (Type C* lubrication region) 25 Teeth

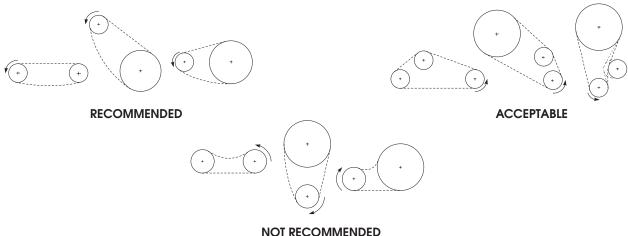

Hardened Teeth: Tooth loading *increases* as the number of teeth in the sprocket *decreases*. Hardening of sprocket teeth is recommended when the number of teeth is 25 or less and/or the sprocket will operate in:


- 1. Drives that are heavily loaded.
- 2. Abrasive conditions.
- 3. High speed drives.
- 4. Drives requiring extremely long life.

Chain Wrap: The recommended minimum wrap angle on the smallest sprocket in the drive is 120°. Wrap angle can be reduced to 90°, if good chain tension adjustment is maintained. If chain tension is not closely maintained with less than 120° wrap, the chain can jump teeth, resulting in damage to itself and/or the sprocket.

Note: For a ratio of 3:1 or less there will always be 120° or more wrap on the small sprocket, regardless of the center distance.

Drive Ratio: The ratio of the sprocket sizes is determined by the desired speed reduction or increase. The maximum recommended ratio for a single reduction is 7:1. In practice, the practical single reduction limit is affected by: the minimum size of the small sprocket, the maximum size of the large sprocket, and the need for sufficient wrap on the small sprocket. It is possible to utilize a reduction as great as 9:1 but a double reduction is preferable. It is important to remember that drive ratio is a function of the number of teeth on the sprockets, not the sprockets' diameters.


7:1 RATIO (TWO DRIVES)

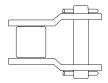
^{*} More detail on type A, B and C lubrication can be found in the Roller Chain Lubrication section of this guide.

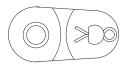
General Drive Considerations

Drive Arrangements

Shown below are recommended, acceptable, and not recommended drive arrangements, along with preferred direction of travel. Every effort should be made to utilize the recommended or acceptable layouts in order to obtain optimum drive life.

Chain Length: Chain length must be an integral number of pitches (no fractions of pitches). Additionally, every attempt should be made during the design process to define a chain length, which is an even number of pitches including the connecting link. In a fixed center-distance drive this can be done by selecting sprockets that provide a ratio near that desired. In an adjustable center-distance drive this is achieved by providing sufficient adjustment or "take-up" so that an even number of pitches can be used and still operate with proper tension.

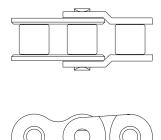

If neither of the above conditions can be met, a chain having an odd number of pitches is required. These designs require the use of offset links or "half links." Offset links are generally costly and will significantly reduce the chain's load carrying capacity.


Offset Links

If required, Diamond offers two types of offsets: single-pitch and multiple-pitch.

Single-pitch offsets are constructed using hybrid link plates consisting of half pin link plate and half roller link plate contours. Single-pitch offsets are secured within the chain using a slip-fit pin and cotter keys.

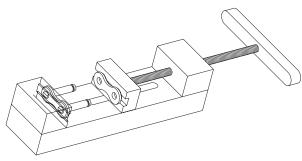
Note: Single-pitch offsets can reduce the load capacity of a roller chain by as much as 30%.



General Drive Considerations

Multiple-pitch offsets, commonly two pitches in length, are constructed with the same basic design as a single-pitch offset, with the exception that the offset link itself is riveted together with a standard roller link assembly. Multiple-pitch offsets afford the user superior performance and generally are less costly than single-pitch offsets. However, multiple-pitch offsets still reduce the load carrying capacity of the chain.

Note: Multiple-pitch offsets can offer virtually the same integrity as the base chain. However, some reduction in load carrying capacity can result from their use.

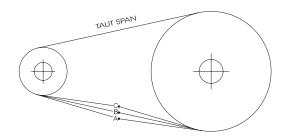

Connecting Links

Connecting links are used to join the ends of the chain together once installed on the drive. Diamond offers two types of cover plates depending upon the application and/or the user's preference: slip-fit or press-fit.

Slip-fit cover sides are supplied when the user prefers ease of assembly and disassembly. The cover plate of a slip-fit connecting link has pitch holes that are larger in diameter than the pins. This allows the user to "slip" the cover plate onto the pins before installing a spring clip or cotters. This style of connecting link is inherently weaker than the base chain because its slip-fit construction does not have the same integrity found in the assembled chain. **Note:** Slip-fit connecting links can reduce the chain's working load capacity by as much as 30%.

Press-fit cover plates are provided when the integrity of the connecting link needs to be equal to that of the base chain. In this design, the cover plate has pitch holes that are smaller in diameter than the pins. This requires the user to "press" the cover plate onto the pins before installing a spring clip or cotters. While more difficult to install, these links do provide the greatest load carrying capability. Diamond does not provide any specific tool for use with the installation of a press-fit cover plate. However, a modified C-Clamp-type device often makes the job much easier.

Note: Never drill out or enlarge the pitch holes of a press-fit connecting link cover side to make the installation easier.

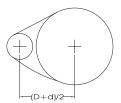


"C-CLAMP"-TYPE DEVICE

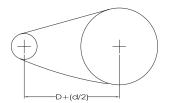
General Drive Considerations

Chain Tensioning/Length Adjustment: Proper chain tension is critical to achieving acceptable service life. Chain tensioning may be accomplished by either: adjusting one of the shafts to increase the center distance, using a movable idler sprocket, or removing pitches from the chain to compensate for wear elongation.

For the majority of slow and medium speed chain drives, the total mid-span movement in the slack span should be approximately 4-6% of the drive's center distance. For drives operating at high speeds, impulse or reversing loads, the total movement should be reduced to 2-3% of the center distance. Drives with vertical centers should also be adjusted to the smaller percentage. If the drive incorporates shaft adjustment or an idler, the amount of movement or "take-up" should always allow for the removal of two pitches of chain.



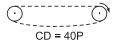
Recommended Possible Mid-Span Movement, A-C, of Slack Span


Dimensions in Inches

Drive			Tangent Le	ngth Between	Sprockets				
Center-Line	5	10	15	20	30	40	60	80	100
Horizontal to 45	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
Vertical to 45	0.12	0.25	0.38	0.50	0.75	1.00	1.50	2.00	2.50

Drive Center Distance: The distance between driver and driven sprockets on a two-sprocket drive must be greater than one-half the sum of the sprocket outside diameters to avoid tooth interference. The shortest practical center distance is recommended.

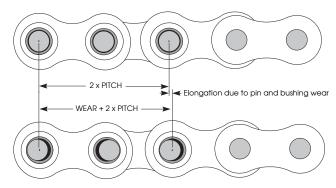
ABSOLUTE MINIMUM CENTER DISTANCE



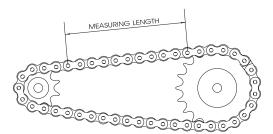
RECOMMENDED MINIMUM CENTER DISTANCE

General guidelines for the selection or determination of the center distance for any two-sprocket drive are:

- 1. For the average application, a center distance of approximately 40 pitches of chain represents good practice.
- 2. A center distance of 80 pitches may be considered as an approved maximum.
- 3. For high speed or pulsating drives a center distance as short as 20 pitches may be desirable to avoid chain whipping and potential drive damage.



General Drive Considerations


Fixed Centers: When adjustable centers or idlers cannot be used, the exact center distance must be calculated and built into the drive. Drives with fixed centers should be conservatively selected and well lubricated to minimize the rate of chain wear. Adjustment for wear elongation in fixed center distance drives is accomplished *only* by removing links or pitches to compensate for wear elongation.

Chain Wear: The individual joints in a roller chain articulate as they enter and leave the sprockets. This articulation results in wear on the pins and bushings. As material is worn away from these surfaces the chain will gradually elongate.

CHAIN DOES NOT "STRETCH" - MATERIAL IS REMOVED FROM PIN AND BUSHING

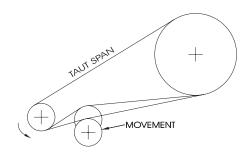
Elongation is normal and may be minimized by proper lubrication and drive maintenance. The rate of wear is dependent upon: the relationship between the load and the amount of bearing area between pin and bushing, the material and surface condition of the bearing surfaces, the adequacy of lubrication, and the frequency and degree of articulation between pins and bushings. The latter is determined by the quantity of sprockets in the drive, their speeds, the number of teeth and the length of the chain in pitches.

MEASUREMENT OF CHAIN FOR WEAR ELONGATION

Relatively accurate wear measurements can be made by using the above illustration. Measure as closely as possible from the center of one pin to the center of another. The more pitches (pins) contained within the measurement increase the accuracy. If the measured value exceeds the nominal by more than the allowable percentage the chain should be replaced. The maximum allowable wear elongation is approximately 3% for most industrial applications, based upon sprocket design. The allowable chain wear in percent can be calculated using the relationship: 200/N, where N is the number of teeth in the large sprocket. This relationship is often useful since the normal maximum allowable chain wear elongation of 3% is valid only up to 67 teeth in the large sprocket. In drives having fixed center distances, chains running in parallel or where smoother operation is required, wear should be limited to approximately 1.5%.

For example, if 12 pitches (12 pins) of a #80 chain were measured and the result was 12.360 or greater (using 3% as the maximum allowable wear), the chain should be replaced. Anything less than 12.360 would still be acceptable by most industrial standards.

For a free wear guage to assist you with this procedure, contact your nearest Diamond Chain distributor, or call 1-800-US-CHAIN. See page 138 of this catalog.


General Drive Considerations

Chain Sag: In long spans, a relatively small amount of excess chain can cause a substantial sag in the slack span. More detailed information concerning the calculation of chain sag can be found in the Conveyor Chain Selection section of this product guide. In designing drives, it is necessary to provide sufficient clearance to prevent interference between the chain and chain case or other parts of the equipment.

Idler Sprockets: Idler sprockets may be used:

- 1. To take up slack in chain when shaft centers are not adjustable and are not located at a proper distance to provide a snug-fitting chain.
- 2. To take up slack in chain developed through normal chain wear. Such take-up will be necessary only at infrequent intervals because chain elongation due to wear occurs at a very slow rate when chain is adequately lubricated.
- 3. To guide the chain clear of any obstructions.
- 4. To increase the arc of chain wrap on other sprockets.
- 5. To provide for a reversed direction of rotation of a sprocket, outside a closed chain.

When an idler is required, it is preferable that it engage slack chain span. If the particular design requires that an idler be installed in the taut span of chain, the service life of the chain will most likely be shortened because of the additional articulation of the chain's joints while under load.

Idler sprockets should be mounted rigidly and firmly so that they will remain in position until some change in position is needed.

When an idler is located within the chain loop it should be located near the larger sprocket. When located outside the chain loop it should be located near the smaller sprocket.

Rarely is it desirable or necessary to provide automatic take-up by means of spring-and-ratchet combinations or dead weight mechanisms. The use of such types of idlers imposes additional and unnecessary loading on the chain joints.

General Drive Considerations

Variable Speed Drives: Many drives must operate over a wide range of speeds and loads. The selected drive must be capable of performing acceptably at any of the required conditions. It is particularly important to be sure the drive is adequate at the most critical operating conditions which are often, but not limited to, the highest and lowest speeds.

Multiple Strand Chains: Used where single strand chains cannot carry the loads. These chains have two or more strands of chain assembled with common pins across the full width of the chain. More information on these types of roller chain can be found in the Multiple Strand Chain section of this guide.

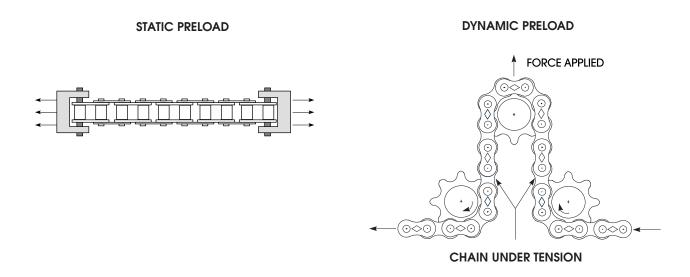
Lubrication: Lubrication is the single most important factor controlling a chain's wear life. Specific methods of lubrication can be found in the Roller Chain Installation section of this guide. However, if the drive is located such that regular lubrication is infrequent or impractical, or if the drive is exposed to contaminants, consider the use of either DURALUBE®, RING LEADER® O-ring or DUST STOPPER™ chain. Details on these products can be found in the Special Lubricated Chain section of this guide.

Environment: If the drive is exposed to water, corrosive agents, contamination, or is in high or low temperature environments, consideration should be given to the use of either Nickel-Plated, Stainless Steel or RING LEADER O-ring chain. More detailed information can be found for these models in the Corrosion/Moisture Resistant and Special Lubricated sections of this product guide.

Temperature Limitations

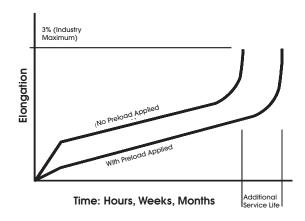
Standard carbon steel-based chains can routinely be used where temperatures are between 0° and 350° F. For temperatures between 350° and 500° F, specially designed chains having extra internal clearances are recommended. At these temperatures, however, some loss of component hardness and reduced wear life can be expected.

Stainless steel chains should be considered when the operating temperature will be below 0° or above 500° F.


RING LEADER® O-ring chain can be routinely used at temperatures up to 150° F. If temperatures exceed this value, contact Diamond for alternate O-ring materials which may be serviceable up to 450° F.

DURALUBE® roller chains are generally limited to ambient temperatures of 120° F.

DUST STOPPER™ roller chains are generally limited to ambient temperatures of 120° F.


General Drive Considerations

Preloading: After assembly, Diamond applies an initial load to the chains, called preload. This loading approximates the recommended maximum loading in service. Preloading can be done either statically or dynamically. Diamond dynamically preloads all of our ½" through 2" pitch Standard and Heavy Series single strand roller chains. Preloading is done to align the various chain components such as pins, bushings and link plates.

Benefit of Preloading: Preloading helps to greatly eliminate initial elongation often found in "lesser" chains. Elimination of this initial elongation can increase usable service life.

BENEFIT OF "PRELOADING"

Chain Selection

Drive Chain

This section offers guidance for the selection of economical roller chain drives, capable of meeting the great majority of drive requirements. However, when information is needed on a special problem, or whenever it seems advisable to have any drive selection confirmed or checked, feel free to contact Diamond's application engineers.

The first step in sizing and selection of a roller chain drive is to assess the known information about the drive's requirements and limitations. The following list represents the information required to adequately select a roller chain which will perform acceptably:

- 1. Source of input power.
- 2. Type of driven equipment.
- 3. Input horsepower available.
- 4. Size and speed of driving shaft.
- 5. Size and speed of driven shaft.
- 6. Center distance between shafts.
- 7. Available center distance adjustment, if any.
- 8. Space limitations such as maximum sprocket diameters.
- 9. Available lubrication methods.
- 10. Hostile environment, if any.

Additionally, the following information, if available, will enhance the ability to select the most appropriate roller chain for the application:

- 1. Frequent stops and starts.
- 2. High starting or inertial loads.
- 3. Extreme temperatures, i.e., above 150° F or below 0° F.
- 4. Large cyclic load variations in each revolution.
- 5. Multiple driven shafts.

Chain Selection

Selecting a Chain Size

Step 1 - Determine Service Factor: In drive design, the nominal horsepower available is usually known. However, the peak horsepower actually realized by the chain may be much greater depending on the power source and the type of equipment being driven.

The service factor allows the user to estimate the maximum horsepower to which the drive may be exposed. This maximum horsepower will normally be a function of both the type of input power available combined with the type of equipment being driven. The following table lists some of the more common driver and driven combinations.

Service Factors

	Powe	er Source	Туре		Power Source Type			
Type of Driven Equipment	Α	В	С	Type of Driven Equipment	Α	В	С	
Agitators for Liquid	1.0	1.0	1.2	Food Processing – Slicers, dough mixers, grinders	1.2	1.3	1.4	
Beaters	1.2	1.3	1.4	Kilns & Dryers	1.2	1.3	1.4	
Blowers & Fans, Centrifugal	1.0	1.0	1.2	Machine Tools –				
Boat Propellers	1.2	1.3	1.4	Drills, grinders, lathes	1.0	1.0	1.2	
Compressors – Centrifugal & lobe	1.2	1.3	1.4	Boring mills, milling machines Punch presses, shears	1.2 1.4	1.3 1.5	1.4 1.7	
Reciprocating, 3+ cylinders Reciprocating, 1 & 2 cylinders	1.2 1.4	1.3 1.5	1.4 1.7	Machinery, General – Uniform load, non-reversing	1.0	1.0	1.2	
Conveyors – Belt or chain, smoothly loaded	1.0	1.0	1.2	Moderate shock load, non-reversing Severe shock load, reversing	1.2 1.4	1.3 1.5	1.4 1.7	
Heavy duty, not uniformly loaded	1.2	1.3	1.4	Mills –	4.0	4.0		
Clay Working Machinery – Pug mills Brick presses, briquetting machinery	1.2 1.4	1.3 1.5	1.4 1.7	Ball, pebble, tube Hammer, rolling	1.2 1.4	1.3 1.5	1.4 1.7	
1 , 1 0 ,				Pumps – Centrifugal	1.0	1.0	1.2	
Cranes & Hoists		nsult Diam		Reciprocating, 3+ cylinders	1.0	1.3	1.4	
Crushers	1.4	1.5	1.7	Reciprocating, 1 & 2 cylinders	1.4	1.5	1.7	
Dredges – Cable, reel, & conveyor drives Cutter head, jig, & screen drives	1.2 1.4	1.3 1.5	1.4 1.7	Paper Industry – Pulp grinders Calendars, mixers, sheeters	1.2 1.4	1.3 1.5	1.4 1.7	
Elevators, Bucket –				Printing Presses, Magazine & Newspaper	1.4	1.5	1.7	
Smoothly loaded or fed Not uniformly loaded or fed	1.0 1.2	1.0 1.3	1.2 1.4	Textile Industry – Calendars, mangles, nappers	1.2	1.3	1.4	
Feeders –	4.0	4.0	4.0	Carding machinery	1.4	1.5	1.7	
Rotary table Apron, screw, rotary vane Reciprocating	1.0 1.2 1.4	1.0 1.3 1.5	1.2 1.4 1.7	Woodworking Machinery	1.2	1.3	1.4	

A - Internal combustion engine with hydraulic drive.

Step 2 - Calculate the Design Horsepower: The design horsepower is determined by multiplying the input horsepower by the service factor obtained above.

Design Horsepower = Input HP x Service Factor

B - Electric motor or turbine.

C – Internal combustion engine with mechanical drive.

Chain Selection

Step 3a - Make a Preliminary Chain Selection: There may be several suitable solutions when it comes to selecting a drive. Generally, however, the smallest pitch, single strand chain that will convey the required horsepower is often the most economical. Using the following abridged horsepower ratings, an initial chain size can be identified. Enter this rating table with the approximate RPM of the smallest sprocket, driving or driven, and locate the smallest size chain capable of transmitting the required horsepower.

Abridged Horsepower Ratings

ASME/	Number of						Revoluti	ions Per M	inute (RPN	Л)					
ANSI #	Teeth	100	300	500	700	900	1200	3000	4000	5000	6000	7000	8000	9000	10000
25	17	0.10	0.29	0.47	0.64	0.82	1.08	2.61	2.65	1.90	1.44	1.14	0.94	0.79	0.67
	21	0.12	0.35	0.58	0.80	1.01	1.34	3.22	3.64	2.60	1.98	1.57	1.29	1.08	0.92
	25	0.15	0.42	0.69	0.95	1.21	1.59	3.84	4.73	3.38	2.57	2.04	1.67	1.40	
35	17	0.34	0.97	1.58	2.18	2.77	3.66	5.64	3.67	2.62	2.00	1.58	1.30		
	21	0.42	1.19	1.95	2.69	3.43	4.52	7.75	5.03	3.60	2.74	2.17			
	25	0.50	1.42	2.32	3.21	4.08	5.38	10.07	6.54	4.68	3.56				
40	17	0.80	2.29	3.74	5.16	6.57	8.66	4.17	2.71	1.94	1.47				
	21	0.98	2.83	4.61	6.37	8.11	10.69	5.72	3.71	2.66					
	25	1.17	3.36	5.49	7.59	9.66	12.73	7.43	4.82						
41	17	0.44	1.26	2.05	2.84	3.61	3.29	0.83	0.54	0.39	0.29				
	21	0.54	1.55	2.54	3.51	4.46	4.52	1.14	0.74	0.53					
	25	0.64	1.85	3.02	4.17	5.31	5.87	1.49	0.96						
50	17	1.55	4.45	7.27	10.04	12.78	16.85	4.98	3.23	2.31					
	21	1.92	5.50	8.98	12.40	15.79	20.81	6.84	4.44						
00	25	2.28	6.55	10.69	14.77	18.79	24.77	8.88	0.74						
60	17	2.66	7.65	12.49	17.26	21.96	22.77	5.76	3.74						
	21	3.29	9.45	15.43	21.32	27.13	31.26	7.91							
00	25	3.92	11.25	18.37	25.38	32.30	40.61	10.27	0.15						
80	13 17	4.76	13.66	22.31	30.81	29.51	19.17	4.85	3.15						
		6.22 7.69	17.86	29.17	40.29	44.13	28.66	7.25							
	21 25	9.15	22.07 26.27	36.03 42.89	49.77 59.25	60.59 75.42	39.36 51.12								
100	13	9.15	26.16	42.69	51.43	35.28	22.92	5.80							
100	17	11.92	34.21	55.87	76.91	52.76	34.27	5.00							
	21	14.72	42.26	69.01	95.33	72.43	47.05								
	25	17.52	50.31	82.16	113.48	94.09	61.11								
120	13	15.39	44.18	72.14	59.51	40.82	26.51								
120	17	20.12	57.77	94.34	88.99	61.04	39.65								
	21	24.86	71.37	116.54	122.18	83.81	54.44								
	25	29.59	84.96	138.74	158.70	108.86	70.71								
140	13	23.81	68.36	111.52	67.32	46.18	29.99								
-	17	31.13	89.39	145.97	100.67	69.05	44.85								
	21	38.46	110.42	180.31	138.22	94.81	61.58								
	25	45.79	131.45	214.66	179.53	123.15	79.99								
160	13	34.54	99.17	124.09	74.91	51.38	33.37								
	17	45.17	129.68	185.56	112.02	76.84	49.91								
	21	55.80	160.20	254.77	153.80	105.50	68.52								
180	13	47.70	136.93	136.35	82.31	56.46	36.67								
	17	62.37	179.07	203.90	123.09	84.43	54.84								
	21	77.05	221.20	279.94	169.00	115.92	75.29								
200	13	63.33	181.81	148.34	89.55	61.43	39.90								
	17	82.81	237.75	221.83	133.91	91.86	59.66								
	21	102.29	293.69	304.56	183.86	126.11									
240	13	101.99	292.82	171.64	103.61	71.07	46.16								
	17	133.37	382.92	256.66	154.94	106.28									
	21	164.76	473.02	352.39	212.73	109.86									

Complete horsepower ratings are located in the Horsepower Rating section of this guide.

If the design horsepower exceeds the capacity of single strand chain or if space limitations (i.e. sprocket diameters) are a consideration, then a multiple strand chain may be required.

www.diamondchain.com

TECHNICAL ENGINEERING

Chain Selection

Step 3b - Selecting a Multiple Strand Factor (if required): Multiple strand chain construction is described in detail in the Multiple Strand section of this guide. For the purpose of drive selection it is important to remember that multiple strand chain does not have the ability to transmit an even multiple of its single strand's horsepower. Example: a #80-2 chain cannot transmit two times the horsepower that a #80 single strand chain will. This is because the loading on a multiple strand chain cannot be exactly and evenly distributed across the full width of the chain due to many factors. Therefore, multiple strand chains are de-rated according to their number of strands. The following table provides values to be used in determining the single strand equivalent horsepower used in either the abridged horsepower ratings on the previous page or in the complete ASME/ANSI horsepower ratings located in the Horsepower Rating Table section of this guide.

Multiple Strand Rating Tables

Number of Strands	Multiple Strand Factor
2	1.7
3	2.5
4	3.3
5 or more	Contact Diamond

Calculating the equivalent single strand horsepower is accomplished by multiplying the input horsepower by the service factor and dividing that quantity by the multiple strand factor.

Once a tentative selection is obtained, refer to the complete ASME/ANSI horsepower ratings to more accurately define the small sprocket's required number of teeth to transmit the required design, single strand or single strand equivalent, horsepower.

In either the abridged or complete horsepower ratings, for exact speeds or numbers of teeth not shown, interpolate between the appropriate columns or lines. Studying the ratings will show that increasing the number of teeth on the small sprocket normally allows the use of a smaller pitch chain. Again, selecting the smallest pitch chain that will transmit the required horsepower makes maximum use of the chain's capacity and usually results in a more cost efficient drive.

Step 4 - Selecting the Large Sprocket: Once the chain and small sprocket sizes have been determined using the complete ASME/ANSI horsepower ratings, determine the number of teeth in the large sprocket by multiplying the number of teeth in the small sprocket by the required speed ratio. It is important to remember that roller chain drive ratios are calculated using the number of teeth on the sprockets, not sprocket diameters.

Output RPM = Input RPM ÷ Desired Ratio or,

Large Sprocket # of Teeth = Small Sprocket # of Teeth x Desired Ratio

Once the sprocket sizes have been determined, check to verify that there is no interference if any limitation was given in the initial drive requirements. If interference is confirmed, it may be possible to select a smaller pitch, multiple strand chain capable of transmitting the required horsepower, allowing the use of smaller diameter sprockets.

Chain Selection

Step 5a - Calculating Chain Length When Ratio is 1:1: If the drive is a 1:1 ratio then the chain length in pitches can be determined easily using the following relationship: the total number of pitches required (chain length) is equal to two times the center distance in pitches plus the number of teeth on one sprocket.

Chain Length = (2 x Center Distance, in pitches) + the Number of Teeth on One Sprocket

The total chain length, in pitches, should always be an even number including the terminal connecting link. This avoids the use of offset links which significantly reduce the load carrying capacity of the roller chain.

Step 5b - Calculating Chain Length When Ratio is Not 1:1: The following equation and associated table may be used to calculate the required length of chain, in pitches, when the driver and driven sprockets are different sizes.

$$L = 2C + \frac{N+n}{2} + \frac{.1013 \; (N-n)^2}{4C} \qquad \text{or substituting A for} \qquad \frac{.1013 \; (N-n)^2}{4}, \quad L = 2C + \frac{N+n}{2} + \frac{A}{C}$$

Where: L = Total chain length in pitches

N = Number of teeth on larger sprocket

n = Number of teeth on smaller sprocket C = Center distance between shafts**in pitches**

VALUES OF A FOR CHAIN LENGTH CALCULATION

N - n	A	N - n	Α	N - n	A	N - n	A
1	0.03	26	17.12	51	65.88	76	146.31
2	0.10	27	18.47	52	68.49	77	150.18
3	0.23	28	19.86	53	71.15	78	154.11
4	0.41	29	21.30	54	73.86	79	158.09
5	0.63	30	22.80	55	76.62	80	162.11
6	0.91	31	24.34	56	79.44	81	166.19
7	1.24	32	25.94	57	82.30	82	170.32
8	1.62	33	27.58	58	85.21	83	174.50
9	2.05	34	29.28	59	88.17	84	178.73
10	2.53	35	31.03	60	91.19	85	183.01
11	3.06	36	32.83	61	94.25	86	187.34
12	3.65	37	34.68	62	97.37	87	191.73
13	4.28	38	36.58	63	100.39	88	196.10
14	4.96	39	38.53	64	103.75	89	200.64
15	5.70	40	40.53	65	107.02	90	205.18
16	6.48	41	42.58	66	110.34	91	209.76
17	7.32	42	44.68	67	113.71	92	214.40
18	8.21	43	46.84	68	117.13	93	219.08
19	9.14	44	49.04	69	120.60	94	223.82
20	10.13	45	51.29	70	124.12	95	228.61
21	11.17	46	53.60	71	127.69	96	233.44
22	12.26	47	55.95	72	131.31	97	238.33
23	13.40	48	58.36	73	134.99	98	243.27
24	14.59	49	60.82	74	138.71	99	248.26
25	15.83	50	63.33	75	142.48	100	253.30

Step 5c - Calculating Chain Length (three or more sprocket drive): For three or more sprocket drives, the required chain length must be determined graphically using a layout drawing or by analyzing the drive using Diamond's Drive Selection Software.

Step 6 - Determining the Type of Lubrication Required: The ASME/ANSI horsepower ratings will indicate the recommended type of lubrication: Manual, Oil Bath or Flood-type lubrication depending upon the operating range of the chain selected. More information on lubrication and maintenance can be found in the Installation and Maintenance sections of this guide.

Chain Selection

Drive Selection Example

The first step is to obtain the necessary information in order to accurately select a chain.

For this example, the following requirements are known:

Source of power - Mechanically driven internal combustion engine

Driven equipment - Two-cylinder pump

Horsepower available - 25

Driving shaft size - 2-1/4 inches

Driving shaft speed - 900 rpm

Driven shaft size - 2 inches

Driven shaft speed - 300 rpm

Center distance - To be determined

Drive arrangement - Horizontal shafts on horizontal centers

Space limitations - Yes, large sprocket cannot exceed 20 inches in diameter.

Lubrication - To be determined

Harsh Environment - None

Solution:

1. Select an appropriate service factor from the Service Factors table located in this section.

The service factor for a two-cylinder pump, driven by an internal combustion engine with mechanical drive, is 1.7.

2. Calculate the Design Horsepower from the equation,

Design Horsepower = Input HP x Service Factor or,

Design Horsepower = $25 \times 1.7 = 42.5$

- 3. Refer to the *abridged* Horsepower Ratings in this section and see that the 42.5 design horsepower, at 900 RPM, falls within the area for #80 chain. This is the smallest single strand chain which, with a 17-tooth sprocket, will transmit the required power.
- 4. Refer to the complete ASME/ANSI horsepower rating rating for #80 chain and note that a #80 chain will transmit 44.13 horsepower at 900 rpm on a 17-tooth sprocket.

	10	26	50	75	99	100	200	391	400	500	600	780	910	998	1880	1280
11	0.44	1.06	2.17	3.85	196									22.57		
12	0.46	3,38	2.26	3.33	198	4.39	8.54	12.61	16.62	20.59	2453	28.44	30.23	25.17	22.35	17.00
13	0.52	1.78	2.45	3.61	421	4.76	9.28	13.00	18.00	22.33	26.57	30.81	35.82	29.81	25.20	19.17
14:	0.58	3.35	2.63	119	453	5.12	9.97	14.71	19.20	24.02	20.62	33.18	37.72	32.88	2816	21.42
15	0.66	1:45	2.82	4.16	4.86	5.6	18.88	15.76	29.77	25,74	30.68	35.55	40.47	28.58	31.23	23.76
16	0.64	1.55	1.11	441	110	5.86	11.39	16.91	22.16	17.6	32.76	37.92	49.11	48.33	34.41	26.17
37	0.68	1.64	3.20	472	5.50	6.22	12.58	17.89	2354	29.17	3475	4029	45.91	4423	37.58	28.66
18		274	3.39		5.83		12.81									
19	0.76	3.09	3.57	5.20	6.15	6.95	13.53	13.95	26.31	32.60	30.04	45.03	\$1.18	52.15	44.52	13.67
20	0.00	1.93	2.78	5.55	1.47	7.32	14.24	21.01	27.70	3432	40.08	47.48	53.33	58.32	48.00	36.50

Chain Selection

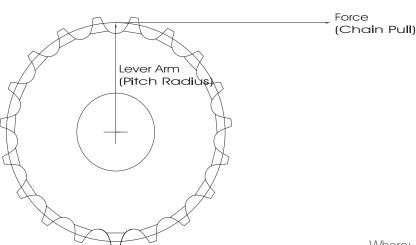
In the General Selection Information section of this guide, it was recommended that the smallest sprocket in a medium speed drive should have a minimum of 17 teeth. So, the 17-tooth sprocket should be suitable for this drive. Consult a sprocket manufacturer's catalog to verify that the 17-tooth #80 sprocket has a maximum bore that will accommodate the required $2-\frac{1}{4}$ " driver shaft. For the purpose of this example, it will. (If it had not, then a larger number of teeth would have been required for the driver sprocket.)

- 5. The *driver* speed is 900 rpm and the *driven* speed is to be 300 rpm, so the speed ratio, or reduction, is 900/300 = 3:1. Therefore, the large sprocket should have $17 \times 3 = 51$ teeth. Again, check with a sprocket manufacturer's guide to be sure that the bore capacity of the sprocket is adequate for a two inch shaft.
- 6. In the General Selection Information section it is recommended that the center distance be as short as 20 pitches for pulsating drives or D + d/2. Using data from the Sprocket Information section, the recommended minimum center distance would be 16.81 + 5.95/2 = 19.79 inches. An acceptable start would be to select 20 pitches (#80 = 1.00 inch) or 20 inches. Based on the 17/51 tooth sprockets and a center distance of 20 pitches (inches), a chain 76 pitches long including connecting link is required. This calculation was made using the chain length equation presented earlier.
- 7. Again, referring to the complete ASME/ANSI horsepower ratings for #80 chain, Type B lubrication is required based upon the speed and number of teeth of the 17-tooth sprocket. Oil bath lubrication will be acceptable.
- 8. Review the initial design requirements to see if this selection is acceptable. The only constraint that was given was that the large sprocket's diameter could not exceed 20 inches. By referring to the Sprocket Information section located in this guide we can verify that the 51-tooth, #80 sprocket has an outside diameter of 16.81 inches, well within the limitation.

No. of Teeth	Flich Stameter	Outside Disneter	Boffors Stam for Ewen Suett Caliper Stam for Odd Teeth
9	2.000 2.005	2:35 2:68	1.622
8	2,613	3.01	1,988
9	2.924	3.35	2.254
10	3.236	3.68	2.611
12 0	3.964	4.33	3.239
3	4.179	4.66	3.523
5	4.810	4.98 5.30	3.869
të :	5.126	5.63	4.501
17	5.442	5.95 6.27	4,794 5,534
9	8.076	6.59	5.430
20	8.392	6.91	5.767
21 22	6.710 7.027	7.24	6.966
23	7344	7.88	6.702
24	7.661	8.20	7.496
26	7.979 8.296	8.52 8.84	7.338 7.671
P	8.614	9.16	7.974
28	8.931 9.249	9.48	8.306
30	9.567	250330	8.942
31	9.985	10.43	9.247
32	10.202	10.75	9.577
34	10.838	11:39	10.213
35	11.474	12.93	10.520
37	11.792	12.35	11.156
36	12.110	12.67	11,485
9	12,420	12.98	11.792
41	13.064	13.63	12.429
43	13.700	13.94	13.065
44	14.018	14.58	13.393
45	14.336	14.90	13.702
45	14.854	15.22	14.029
48	15.290	15.86	14.665
49 50	15,616	16.18	15,301
61:	16.244	16.81	15.611
52	16.562	17.13	15.937

Chain Selection

Slow Speed Drives Selection


For drives operating at speeds lower than those shown in the horsepower ratings, chains may be selected on the basis of chain pull.

If chain pull is not known directly, determine it from the amount of horsepower to be transmitted by referring to equations below. By using the input horsepower, RPM and pitch radius of the sprocket (one-half pitch diameter), an approximate chain pull can be determined. An appropriate chain can be selected by comparing chain tensile strengths against the chain pull.

Important - Chain pull must not exceed \(\frac{1}{16} \) th of the ultimate tensile strength when the chain is connected using press-fit connecting links and no offset links are used. Chain pull must not exceed 1/9 th of the ultimate tensile strength when slip-fit connecting links or offset links are used in the chain.

Horsepower, Chain Pull, and Torque Equations

Torque = Force x Lever Arm = Chain Pull x Pitch Radius

$$H = \frac{L \times S}{33000} = \frac{Q \times N}{5252} = \frac{q \times N}{63025}$$

$$L = \frac{H \times 33000}{S} = \frac{H \times 396000}{P \times T \times N} = \frac{H \times 126050}{D \times N}$$

$$Q = \frac{H \times 5252}{N} \text{ or } Q = \frac{H \times 63025}{N}$$

$$S = \frac{T \times P \times N}{12}$$

Where:

D = Pitch diameter of sprocket (inches)

H = Horsepower to be transmitted

L = Load or chain pull (pounds)

N = Speed of sprocket (rev./min.)

P = Pitch of chains (inches)

Q = Torque (foot-pounds)

q = Torque (inch-pounds)

S = Speed of chain (feet/min)

T = Number of teeth on sprocket

Chain Selection

Example of Slow Speed Drive Selection

Again, the first step is to obtain the necessary information.

For this example, the following requirements are known:

Horsepower available - 2

Driving shaft size - 2-1/4 inches

Driving shaft speed - 9 rpm

Driven shaft size - 2-1/4 inches

Driven shaft speed - 3 rpm

Center distance - To be determined

Drive arrangement - Horizontal shafts on horizontal centers

Space limitations - None

Lubrication - Manual or Drip

Harsh environment - None

Inventory - Yes, there is an abundance of #80 chain on the shelf.

Solution:

Determine if the #80 chain will be acceptable and if so, select driver and driven sprocket sizes and center distance.

If we first use the following equation:

$$H = \frac{q \times N}{63025}$$

Where H is the horsepower available, q is the torque in inch-pounds and N is the smallest sprocket's speed in revolutions per minute.

Torque, q, in inch-pounds can also be represented by F x d where F is the force or tension in the chain, and d is the lever arm, or in this case, the pitch radius of the smallest sprocket.

Applying our known values into the equation we have:

$$2HP = \frac{q \times 9 \text{ RPM}}{63025}$$
 which can be rearranged to

$$q = \frac{(2 \text{ HP x } 63025)}{9 \text{ RPM}}$$
 or $q = 14,006 \text{ inch-pounds}$

Chain Selection

From the previous statement that chain pull should not exceed $\frac{1}{6}$ to $\frac{1}{9}$ of the chain's tensile strength and we are tentatively trying to use #80 chain, let's assume the more conservative condition and apply $\frac{1}{9}$ to the tensile of #80 chain to arrive at our maximum working load.

Working load = chain tensile strength x
$$\frac{1}{9}$$

= 14,500 pounds x $\frac{1}{9}$
= 1,611 pounds
Since q = F x d, then 14,006 = 1,611 x d or,
d (pitch radius of the sprocket) = $\frac{q}{F} = \frac{14,006}{1,611} = 8.694$ inches (x 2 = pitch diameter)

To determine what size sprocket this equates to, we need to again refer to the Sprocket Information section for #80 chain.

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam for Even Teet! Caliper Diam for Odd Teeth
54	17.198	17.77	16.573
55 56	17.517	18.09 18.41	16.884 17.210
57 58	18.153	18.73	17.521
59	18.471 18.789	19.04	17.846 18.158
60	19.107	19.68	18.482
61	19.426	20.00	18.794 19.119
63	20.062	20.64	19.431
64 65	20,380	20.96	19.755
66	21.016	21.59	20,391
67 68	21.653	21.91 22.23	21.028
69 70	21.971 22.289	22.55 22.87	21.340 21.664
71	22.607	23.19	21.977
72 73	22.926 23.244	23.50 23.82	22.301 22.613
74	23.562	24.14	22.937
75 76	23.880 24.198	24.46 24.78	23.250 23.573
77	24.517	25.10	23.887
78 79	24.835 25.153	25.42 25.73	24.210 24.523
80	25.471	26.05	24.846
81 82	25.790 26.108	26.37 26.69	25.160 25.483
83	26.426	27.01	25.796
84 85	26.744 27.063	27.33 27.64	26,119 26,433
86	27,381	27.96	26.756
87 88	27.699 28.017	28.28 28.60	27.070 27.392

Excerpt from Sprocket Diameters - USA Standard #80 Roller Chain

Chain Selection

From this, we see that in order for a #80 chain to be used, the smallest sprocket would need to have a pitch diameter (diameter is twice the pitch radius) of 17.517, or 55 teeth! This is probably not acceptable because in order to arrive at the desired speed reduction, the driver sprocket would need to be 159 teeth.

It is safe to say that the inventory of #80 chain will have to be used on another drive and we should perhaps take another look at this selection process.

From the General Selection section, we know that slow speed drives are recommended to have at least a 12-tooth sprocket. A good approach at this time would be to examine the Sprocket Information section and determine what the diameters are (actually we want the radius) of 12-tooth sprockets for some sizes greater than #80.

Doing this, we note that:

#100 12-tooth, pitch diameter of 4.83", radius of 2.42" #120 12-tooth, pitch diameter of 5.79", radius of 2.90" #140 12-tooth, pitch diameter of 6.76", radius of 3.38"

And, by applying our \(^1\)% criteria to the tensile strengths of those three models we find:

#100 working load is 2,666 pounds #120 working load is 3,777 pounds #140 working load is 5,111 pounds

Now we can replace the above values into the $q = F \times d$ equation.

For #100, F = q/d = 14,006/2.42 = 5,787 pounds which EXCEEDS the recommended working load for #100 chain.

For #120, F = q/d = 14,006/2.90 = 4,829 pounds which EXCEEDS the recommended working load for #120 chain.

For #140, F = q/d = 14,006/3.38 = 4,143 pounds which IS BELOW the recommended working load for #140 chain.

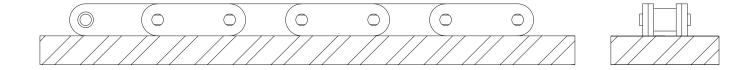
Based on the above, #140 chain operating on a 12-tooth driver is an acceptable solution. In practice, either a larger sprocket or using a smaller multiple strand chain could have resulted in an acceptable solution as well.

The selection of the driven sprocket is done in the same manner as the general drive selection by multiplying the drive ratio by the small sprocket's number of teeth. In this case, the desired ratio is 3:1 so the driven sprocket size will be 3×12 teeth or 36 teeth.

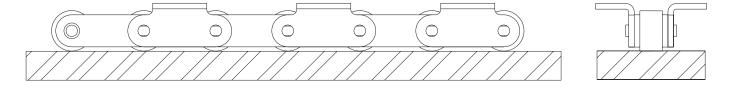
Center distance is calculated as before using 20 pitches as an acceptable minimum. 20 pitches \times 1.75 inches per pitch = 35.00 inches. Verifying that the sprockets selected will fit into that envelope, using the formula, minimum center distance equals D + d/2; 21.05 + 7.58/2 = 24.84 inches. So, 20 pitches should be fine for center distance.

The required chain length can again be calculated using the chain length equation presented earlier for a resulting chain length of 65 pitches. This length would require the use of an offset link which should be avoided whenever possible. Incorporating enough center distance adjustment into the design, permitting the use of a chain either 64 or 66 pitches long, would result in a more desirable design.

Chain Selection


Conveyor Chains

Conveyor designers will find the attributes of precision roller chain valuable in the design and application of a broad spectrum of conveyor or material handling systems. High strength-to-weight ratios combine with precision machined and hardened parts to provide excellent performance, long life and minimized power requirements, all resulting in lower cost/high productivity operations.


Standard Series, single-pitch roller chain built in accordance with ASME/ANSI B29.1, is available with a variety of attachments. These attachments, and details about the chains' configurations, can be found in either the Attachment Chain section or Made-To-Order section of this guide. Standard Series chains range in size from $\frac{1}{4}$ " pitch up to 2" pitch and are commonly used where speeds are relatively high and smooth operation is required. Standard Series chains are very versatile in that attachments with almost any desired spacing can be provided. Stainless steel chains, in many sizes, are also available for installations requiring corrosion resistance or for operation in extreme temperatures.

Double-Pitch Conveyor chains, built in accordance with ASME/ANSI B29.4, are available in sizes ranging from 1" pitch up to 4" pitch. Double-Pitch chains are most often used when speeds are slow to moderate, as their operation is generally not as smooth as single-pitch chains. Additionally, when relatively long shaft centers are present, double-pitch chains can be less costly because their construction requires only half as many components.

Double-Pitch Conveyor chains can be supplied with standard diameter rollers when the design calls for the chain to transport the conveyed product with the chain sliding on the edges of the oval contour link plates.

Double-Pitch Conveyor chains can be supplied with oversized carrier rollers when the load is to rest on an attachment but be supported by the rollers. Chains with oversized rollers are recommended when it is necessary to reduce friction by "rolling" rather than "dragging" the product. This type of design can dramatically reduce the power required to operate the conveyor.

Double-Pitch Conveyor chains are available with a wide variety of standard or made-to-order attachments. Details on attachments and the chains' configurations can be found in either the Standard Attachment Chain section or Made-To-Order section of this guide. Additionally, depending on the model of conveyor chain required, many are available in stainless steel if the environment requires corrosion resistance or when operating temperatures are extreme.

In conveyor applications, roller chains are usually applied at lower speeds and with fewer joint articulations than in power transmission "drive" applications. Therefore, different design considerations and selection procedures are used in selecting conveyor chains.

Chain Selection

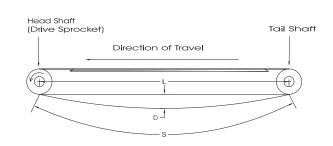
Sprockets

Size: Sprockets for conveyors are usually the same size for the head shaft and tail shaft. Sprockets having the largest practical number of teeth are desirable to reduce chordal action, provide for smooth operation and obtain maximum chain wear life. It is recommended that sprockets have a minimum of 15 effective teeth. The number of effective teeth is the number of teeth engaged by the chain rollers in one revolution of the sprocket. If a single-pitch conveyor chain is used the effective teeth equals the number of sprocket teeth. When using double-pitch chain, use single-pitch sprockets only when more than 15 effective (30 actual) teeth are designed in. For drives with less than 30 actual (15 effective) teeth, use special cut double-pitch sprockets for maximum chain and sprocket life. Additionally, if a single-pitch sprocket is used on a double-pitch chain conveyor, an odd number of teeth in the sprocket is desirable. This allows for the chain to engage alternate teeth each revolution, thus distributing the tooth wear more evenly throughout the life of the chain and sprocket.

Hardness: The guidelines for hardening conveyor sprocket teeth are similar to those of power transmission drive sprocket teeth. For drives which are heavily loaded, drives that possess sprockets with a minimum number of teeth, or drives that are exposed to abrasives such as dirt or paper dust, consideration should be given to hardening the sprocket teeth to prolong both chain and sprocket life.

Alignment: Head and tail shafts as well as sprockets should always be aligned using procedures outlined in the Installation section of this guide. Additionally, because the majority of conveyors are designed and operate with two or more strands of chain operating in parallel, head shaft sprockets should be keyed to a common shaft so that the teeth of each sprocket are in alignment to assure equal load distribution on all chains in the conveyor. When chains in a conveyor are connected together with cross-members such as rolls or slats, it is suggested that the tail shaft sprockets also be keyed to the shaft to assure alignment of the sprocket teeth.

Chain Length Matching


With most conveyor applications, chains are expected to operate in parallel and their relationship to one another is critical. Information provided in either the Standard Attachment Chain section or the Made-To-Order section of this guide will describe Diamond's ability to control length uniformity. Please review either of these sections prior to ordering chain.

Take-ups: Take-ups are used to adjust or compensate for the chain's elongation in service. The maximum allowable wear elongation, based upon sprocket design, for most single-pitch chain is approximately 3%. The maximum allowable wear elongation, based on sprocket design, for most double-pitch conveyor chain is approximately 1.5%. Therefore, the amount of take-up required should be either of the above values, depending on the base chain used, or the design should incorporate the ability to remove an entire attachment "cycle" from the chain(s) if necessary to accommodate wear elongation.

Screw-type take-ups are ordinarily used and are located on the tail shaft end of the conveyor if possible. Chain should not be operated with both top and bottom strands taut because lubricant is never allowed to "flow" within the pin/bushing joint, re-establishing a barrier against wear. However, where constant tension is required, such as

on conveyors subjected to wide temperature variations, springor gravity-type take-ups are acceptable, recognizing that some reduced wear life may result.

An alternate method of maintaining chain tension and allowing for wear elongation is to incorporate a catenary in the design. The most common design allows the chain to be unsupported in the return span of the conveyor. As the chain wears during service the excess lineal length is allowed to "sag" and thus no physical take-up is necessary.

Chain Selection

This type of design can have some negative effects on the operation of the conveyor. First, there may not be sufficient clearance between the conveyor and floor to accommodate the excess chain. This is particularly true if the conveyor is long. Second, there may be a considerable amount of catenary tension. This tension is distributed throughout the entire chain and is added to the working tension. In some cases, it may be great enough to exceed the working load of the chain defined initially in the selection process. Catenary tension must be considered when calculating chain working loads, bearing loads and shaft diameters, but is not a factor in determining the horsepower required to operate the conveyor.

The values for depth of sag as well as catenary tension can be approximated from the following equations:

Depth of Sag, D =
$$\frac{\sqrt{3S^2 - 3L^2}}{4}$$

Where:

D = Depth of chain sag in inches

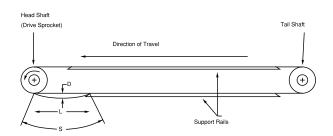
L = Straight line between points of support, normally shaft centers, in inches

S = Actual amount of chain in return strand in inches (number of links between points of support x chain pitch)

Catenary tension, T =
$$\frac{W}{12} \left[\frac{S^2}{8D} + \frac{D}{2} \right]$$

Where:

T = Catenary tension in pounds


W = Weight of chain in pounds per foot

S = Actual amount of chain in return strand in inches (number of links between points of support x chain pitch)

D = Depth of chain sag in inches

If the depth of sag or the amount of catenary tension exceeds the capacity of the machine's design or the chain's working load then a support rail can often be installed under the return span to direct the chain sag or to reduce the magnitude of catenary tension.

It is normal practice not to support the entire return span but to leave a short unsupported section for accumulation of chain slack.

Input Power

It is recommended that the drive sprocket be located on the head shaft so that only the span transporting product will be under maximum tension.

Temperature Limits

For operating limits of conveyor chains, refer to the General Design Considerations section of this guide.

www.diamondchain.com

TECHNICAL ENGINEERING

Chain Selection

Lubrication: To attain maximum service life, all chains should be kept clean, free from grit, and well-lubricated. Conveyors commonly operate at slow speed with light loads and as such, lubrication application is not defined as with power transmission drive chains. Generally, lubricant applied to the chain by either manual or drip-type lubrication systems will be satisfactory. The specific grade of lubricant may depend upon the temperature and construction of the conveyor. For extremely high or low temperatures, special lubricants such as synthetic oils or molybdenum disulfide-based lubricants may be required. More information on lubricants and lubrication can be found in the Lubrication section of this guide.

If lubrication is not possible or the chain must operate in a contaminated environment, consideration should be given to either DURALUBE® or RING LEADER® O-ring chain. Information on these products is located in the Special Lubricated section of this guide.

Conveyor Chain Selection

Conveyor chains usually are selected for specific operating conditions on the basis of the maximum anticipated chain pull. However, the spacing of attachments, if required, may be the determining factor in selecting the size of the chain.

The following steps outline the selection of most commonly designed conveyor drives:

- 1. Obtain required information.
- 2. Calculate preliminary chain pull.
- 3. Adjust preliminary chain pull for conveyor speed.
- 4. Make preliminary chain selection.
- 5. Finalize chain size selection.
- 6. Select required sprocket sizes.
- 7. Calculate total chain length.
- 8. Determine required horsepower.
- 9. Determine required lubrication system.

Step 1 - Obtain Required Information: The following information is necessary to properly select most conveyor chains:

- 1. Conveyor arrangement, i.e., horizontal, vertical or inclined.
- 2. Required speed in feet per minute.
- 3. Weight of conveyed material in pounds per foot of conveyor length.
- 4. Material being conveyed, i.e., wooden pallet, paper box, etc.
- 5. Weight of attachments or "flights" per foot, if applicable.
- 6. Size of sprockets.
- 7. Shaft center distance in feet.
- 8. Type of operating environment, i.e., clean, dirty, corrosive, etc.
- 9. Available or allowable lubrication.

Chain Selection

Step 2 - Calculate Preliminary Chain Pull: The preliminary required chain pull may be calculated from the following:

- 1. For horizontal conveyors:
 - $P = [(Wm + 2Wc) \times L \times Fx] + Wm \times L \times Fm$
- 2. For inclined conveyors:
 - $P = [(Wm \times 2Wc) \times L \times Fx] + (Wm + Wc) \times H + Wm \times L \times Fm$
- 3. For vertical conveyors:

$$P = (Wm + Wc) H$$

Where:

- P = Chain pull, in pounds
- Wm = Weight of conveyed material in pounds per foot
 - L = Conveyor length, commonly shaft center distance, in feet
 - Fx = Coefficient of friction between chain and conveyor obtained from the Coefficients of Sliding Friction table (if chain is expected to convey the material by sliding on the edges of the link plates) or, from the Coefficients of Rolling Friction table (if the chain is expected to convey the material by rolling on oversized carrier rollers).
- Fm = Coefficient of friction between chain and conveyed material. This value can vary significantly and therefore, it is recommended to refer to an engineering handbook for the appropriate value.
 - L = Horizontal length of conveyor, in feet
- H = Vertical height of conveyor, in feet
- Wc = Weight of chain and attachments in pounds per foot

Chain Selection

Rolling Coefficients of Friction

		Static	Rolling		
Chain Number	Dry	Lubricated	Dry	Lubricated	
C-2042	0.17	0.12	0.14	0.10	
C-2052	0.16	0.11	0.13	0.09	
C-2062H	0.16	0.11	0.13	0.09	
C-2082	0.15	0.10	0.12	0.08	
C-2102H	0.14	0.09	0.11	0.07	
C-2122H	0.14	0.09	0.11	0.07	
C-2162H	0.13	0.08	0.10	0.07	

Sliding Coefficients of Friction

	Dry	Lubricated
Static	0.33	0.24
Sliding	0.27	0.21

In the preliminary calculations of chain pull, ignore (Wc) because the required chain size has not been established.

When the conveyed load is supported on the chain rollers, large diameter rollers are recommended.

For multiple strand conveyors, assuming each chain is equally loaded, divide the total chain pull calculated by the number of chains in the conveyor to obtain the equivalent single strand chain pull.

Step 3 - Adjust the Preliminary Chain Pull Based Upon Conveyor Speed: Multiply the calculated single strand chain pull by the load factor for the conveyor chain speed from the Load Factors for Conveyor Speed table.

Load Factors for Conveyor Speed

Chain Speed (feet per minute)	Load Factor	Chain Speed (feet per minute)	Load Factor
Up to 50	1.00	200 to 300	2.2
50 to 100	1.15	300 to 400	3.2
100 to 200	1.50	400 to 500	4.6

Step 4 - Make Preliminary Chain Selection: Using the preliminary chain pull, adjusted for conveyor speed, select a chain with an adequate working load from the Working Loads for Conveyor Chains table. If the conveyor operates in an abrasive or corrosive environment, consider using RING LEADER® O-ring or Stainless Steel chain. Remember that the preliminary chain pull calculations still ignored the weight of the chain and attachments.

Working Loads for Conveyor Chains

ASME/ANSI Chain Number	Pitch (Inches)	Carbon Steel	Heat Treated Stainless	Non-Heat Treated Stainless
25	1/4	125		30
35	3/8	300	150	75
40	1/2	530	260	130
41	1/2	260	130	65
50	5%	870	430	215
60	3/4	1210	600	300
80	1	2070	1030	515
100	1 1/4	3420		
120	1 ½	4850		
140	1 3/4	6570		
160	2	8580		
C2040, C2042	1	530	260	130
C2050, C2052	1 1/4	870	430	215
C2060, C2062	1 ½		600	300
C2080, C2082	2		1030	515
C2060H, C2062H	1 ½	1210		
C2080H, C2082H	2	2070		
C2100H, C2102H	2 ½	3420		
C2120H, C2122H	3	4850		
C2160H, C2162H	4	8580		

Chain Selection

Step 5 - Finalize Chain Size Selection: After a preliminary chain has been selected, recalculate the chain pull including the weight of the chain, including attachments, per foot. Nominal values for chain weight and attachment weight can be obtained from the Chain and Attachment Weight table below.

Chain and Attachment Weight

ASME/ANSI or Diamond Number	Weight per Foot Base Chain	Weight for each Straight or Bent Attachment	Weight for each Extended Pin Attachment	ASME/ANSI or Diamond Number	Weight per Foot Base Chain	Weight for each Straight or Bent Attachment	Weight for each Extended Pin Attachment
25	.0840	.0007		C2040	.3400	.0068	.0019
35	.2100	.0019	.0015	C2042	.5000	.0068	.0019
41	.2600	.0033	.0015	C2050	.5800	.0130	.0037
40	.4100	.0030	.0020	C2052	.8100	.0130	.0037
50	.6800	.0090	.0037	C2060H	1.0500	.0310	.0062
60	.9900	.0120	.0062	C2062H	1.4200	.0310	.0062
80	1.7300	.0250	.0150	C2080H	1.4000	.0680	.0150
100	2.5100	.0650	.0250	C2082H	2.1300	.0680	.0150
120	3.6900	.1000	.0450	C2100H	2.4800	.1180	.0250
140	5.0000	.1800	.0670	C2102H	3.5100	.1180	.0250
160	6.5300	.2500	.0960	C2120H	3.6000	.1860	.0450
				C2122H	5.4800	.1860	.0450
				C2160H	6.1800	.4700	.0960
				C2162H	9.3400	.4700	.0960

Calculate the catenary tension from the formula previously shown. Confirm that the catenary tension does not exceed the working load of the preliminary chain selection's chain. If it does exceed the capability of the preliminary selection either increase the size of the selected chain, recalculate catenary tension and compare again or consider installing support rails to minimize the amount of chain in the unsupported span.

Step 6 - Select Required Sprocket Sizes: Select the sprockets for the conveyor using the guidelines previously listed in this section.

Step 7a - Calculate Required Chain Length: If both the headshaft and tailshaft sprockets have the same number of teeth, the total chain length can be calculated from the formula:

L = Number of teeth on one sprocket + (2 x center distance in pitches)

Where:

L = total chain length required, in pitches.

Chain length should be an even number of pitches. The total chain length must be exactly divisible by the attachment spacing. For example, if the attachments are located every fourth pitch then the total chain length must be divisible by four.

Chain Selection

Step 7b - Calculate Required Chain Length: If the headshaft and tailshaft sprockets are of unequal size, total chain length can be calculated from the formula:

$$L = 2C + \frac{N+n}{2} + \frac{.1013 \; (N-n)^2}{4C} \qquad \text{or substituting A for} \qquad \frac{.1013 \; (N-n)^2}{4}, \quad L = 2C + \frac{N+n}{2} + \frac{A}{C}$$

Where: L= Total chain length in pitches

N = Number of teeth on larger sprocket

n = Number of teeth on smaller sprocket C = Center distance between shafts**in pitches**

Values of A For Chain Length Calculation

N - n	A	N - n	Α	N - n	Α	N - n	Α
1	0.03	26	17.12	51	65.88	76	146.31
2	0.10	27	18.47	52	68.49	77	150.18
3	0.23	28	19.86	53	71.15	78	154.11
4	0.41	29	21.30	54	73.86	79	158.09
5	0.63	30	22.80	55	76.62	80	162.11
6	0.91	31	24.34	56	79.44	81	166.19
7	1.24	32	25.94	57	82.30	82	170.32
8	1.62	33	27.58	58	85.21	83	174.50
9	2.05	34	29.28	59	88.17	84	178.73
10	2.53	35	31.03	60	91.19	85	183.01
11	3.06	36	32.83	61	94.25	86	187.34
12	3.65	37	34.68	62	97.37	87	191.73
13	4.28	38	36.58	63	100.39	88	196.10
14	4.96	39	38.53	64	103.75	89	200.64
15	5.70	40	40.53	65	107.02	90	205.18
16	6.48	41	42.58	66	110.34	91	209.76
17	7.32	42	44.68	67	113.71	92	214.40
18	8.21	43	46.84	68	117.13	93	219.08
19	9.14	44	49.04	69	120.60	94	223.82
20	10.13	45	51.29	70	124.12	95	228.61
21	11.17	46	53.60	71	127.69	96	233.44
22	12.26	47	55.95	72	131.31	97	238.33
23	13.40	48	58.36	73	134.99	98	243.27
24	14.59	49	60.82	74	138.71	99	248.26
25	15.83	50	63.33	75	142.48	100	253.30

Again, the total chain length must be exactly divisible by the attachment spacing. For example, if the attachments are located every fourth pitch then the total chain length must be divisible by four.

Step 8 - Determine the Required Input Horsepower: The required input horsepower can be calculated from the formula:

HP = chain pull x # of chains x conveyor speed in feet per minute 33.000

Step 9 - Determine the Required Lubrication System: Refer to the guidelines for conveyor lubrication provided earlier in this section.

Chain Selection

Example Conveyor Chain Selection

Given

A horizontal conveyor transports machine components on wooden pallets at 56 feet per minute using two parallel roller chains joined every 12 inches by a steel flight weighing 0.75 pounds each. The maximum weight of a pallet, including the machine components, is 120 pounds. The overall size of the pallet is 36 inches x 36 inches. The length of the conveyor, from center of headshaft to center of tailshaft is 75 feet, allowing a maximum of 25 pallets to be transported at one time. It is desired to utilize a roller chain constructed with oversized carrier rollers. There is no take-up currently designed for the conveyor as the excess chain will be accumulated using a catenary between head and tail shafts.

Determine

Size of roller chain required

Size of sprockets

Recommended method of lubrication

Required input horsepower

Step 1: Obtain the required information. From the given information, we know the following:

Horizontal conveyor.

Speed is to be 56 feet per minute.

Shaft centers are located 75 feet apart.

Weight of **conveyed material** is 120 pounds over a 36 inch span, or **40 pounds per foot** of conveyor length.

Conveyed material is a wooden pallet.

The drive is intended to have **two chains** connected with metal flights weighing .75 pounds each, every 12 inches. So, the **weight of the flights is .75 pounds per foot** of conveyor length.

The flights will be attached to the chains every 12 inches. Therefore the attachments will be spaced every 12 inches.

No specific sprockets have been defined but must be recommended.

Chain Selection

Step 2: Calculate preliminary chain pull.

Using the equation, $P = [(Wm + 2Wc) \times L \times Fx] + Wm \times L \times Fm$, and the known information, the preliminary chain pull is:

 $P=[(40 + 2 \times 0) \times 75 \times 0.1] + 40 \times 75 \times .5 = 1800$ pounds

Remember we omit the weight of the chain, Wc, in the preliminary chain pull calculation. Additionally, because the given information requested a roller chain having oversized carrier rollers, we selected an average Fx of .1 from the Coefficients of Rolling Resistance table. Because there is a possibility that the pallets may "accumulate," forcing the chain to "slide" along the bottom surface of the pallets, an approximate coefficient of friction between wood and steel of 0.5 was selected from an engineering handbook.

Step 3: Adjust the preliminary chain pull for conveyor speed. Using the values in the Load Factors for Conveyor Speed table, we would use the factor 1.5, as the given information tells us that the conveyor's speed will be 56 feet per minute.

P= preliminary chain pull calculation x speed factor

P= 1800 pounds x 1.5 = 2700 pounds

Step 4: Make preliminary chain selection. To arrive at the single strand chain pull, we divide the total chain pull by the number of strands employed. In the example it was stated that the conveyor was to have two chains connected by flights. Therefore, the total chain pull of 2700 pounds can be divided by two to arrive at the single strand chain pull.

Single Strand Pull = Chain pull/number of chains in drive

P = 2700/2 = 1350 pounds.

Using this value we can select a chain size from the Working Loads for Conveyor Chains table. In this example, no specific environment was defined so we can assume carbon steel chains will be acceptable. Based upon the 1350 pound single strand chain pull calculated above, a C2082H chain would be acceptable based on its recommended working load of 2070 pounds.

Chain Selection

Step 5: Finalize chain selection. Now we include the weight of the selected chain and attachments along with the correct coefficient of rolling resistance for C2080H in the chain pull equation to verify that our selection is acceptable. We will assume that the design calls for bent attachments on both sides of the chain at 6-6 spacing (6 pitches of C2082H = 12 inches). Using the equation:

 $P = [(Wm + 2Wc) \times L \times Fx] + Wm \times L \times Fm$ along with information extracted from the Chain and Attachment Weight table, and the given information, the finalized chain pull is:

$$P=[(40 + 2 \times 2.266) \times 75 \times 0.08] + 40 \times 75 \times .5 = 1767$$
 pounds

Multiplying this by the speed factor of 1.5 gives results in $1767 \times 1.5 = 2650$ pounds.

But, because this drive is to be composed of two parallel chains, the single strand chain pull is 2650/2 or 1325 pounds. This is still well within the limitations for C2082H conveyor chain.

Because there is no take-up designed into the drive other than a catenary under the conveyor, depth of sag and catenary tension must be calculated and considered in the drive's selection.

Using the equations for both sag and tension, and considering the maximum allowable elongation of 1.5% (approximately 27.00 inches), the following values are determined:

Depth of Sag,
$$D = \frac{\sqrt{3S^2 - 3L^2}}{4}$$

$$D = \frac{\sqrt{3(927)^2 - 3(900)^2}}{4}$$

D = 96.17 inches

Catenary tension,

$$T = \frac{W}{12} \left[\frac{S^2}{8D} + \frac{D}{2} \right]$$

$$T = \frac{2.26}{12} \left[\frac{927^2}{8D} + \frac{96.17}{2} \right]$$

T= 219.41 pounds tension due to the catenary

219.41 pounds is well within the capabilities of C2082H's working load. Therefore C2082H can be selected for use on this drive.

Chain Selection

Step 6: Select required sprocket sizes. Using information provided earlier in this section, sprockets having at least 15 effective teeth should be acceptable.

Step 7: Calculate chain length. Both head and tail shafts will have sprockets of equal size. Therefore, chain length can be calculated using the formula:

Lc = Number of teeth (pitches) on one sprocket + (2 x center distance in pitches)

$$Lc = 15 + [2 \times (75 \times 6)] = 915$$
 pitches

Chain length must be a.) an even number of pitches and b.) evenly divisible by the spacing of the attachments. Therefore, 918 pitches is required as the spacing must be evenly divisible by 6.

It is possible to recalculate the depth of sag, D, and the catenary tension, T, using the new chain length, but it would not significantly affect the existing calculations.

Step 8: Determine the required input horsepower. Using the equation:

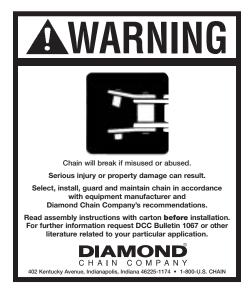
HP =
$$\frac{\text{chain pull x \# of chains x conveyor speed in feet per minute}}{33,000}$$

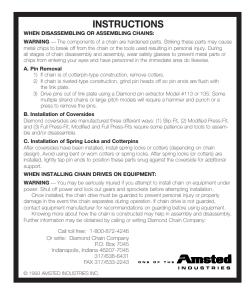
$$HP = \frac{1325 \times 2 \times 56}{33.000} = 4.49 HP$$

Step 9: Determine the required lubrication. As stated earlier, the majority of conveyor systems will provide satisfactory service life when lubricated using manual or drip lube systems. Therefore, unless the conveyor is operating in an unusually harsh or contaminated environment, type A or manual lubrication should serve satisfactorily.

Roller Chain Installation

Roller chain, properly selected, installed and maintained, is an extremely versatile means of power transmission. It is possible, however, to greatly reduce a chain's life and even induce failure if the chain is abused through improper installation, operation, or maintenance procedures. In certain applications, chain failure can lead to personal injury or property damage.


A chain's installation, lubrication and maintenance are generally quite simple but as with most similar systems, proper preparation will add greatly to the overall ease and effectiveness of the task.


Areas to be considered prior to, as well as after installation are:

- 1. Safety.
- 2. Chain, sprockets, and other drive components.
- 3. Shaft and sprocket alignment.
- 4. Chain and connecting link installation.
- 5. Initial correct tension and provisions for adjustment during service.
- 6. Provision for adequate lubrication.
- 7. Appropriate protective guarding.

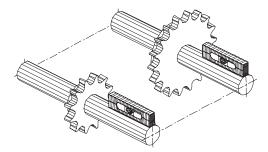
Safety: When installing or connecting/disconnecting a roller chain:

- 1. Always lock out equipment power switch before removing or installing chains.
- 2. ALWAYS USE SAFETY GLASSES to protect your eyes.
- 3. Wear protective clothing, gloves and safety shoes as appropriate.
- 4. Support the equipment to prevent uncontrolled movement of chain and parts.
- 5. Use of pressing equipment is recommended to remove or install press-fit-type connecting/pin links. Tooling must be in good condition and properly used.
- 6. Do not attempt to connect or disconnect chain unless you know the chain's construction, including the correct direction for connecting link removal or insertion.

Note: These instructions are available in 30 languages. Call us.

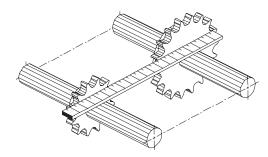
Roller Chain Installation

Condition of Components: Shafts, sprockets, bearings, and any other relevant machine framing should be thoroughly examined. Any evidence of damage or wear should be repaired prior to the chain's installation.


Chain Inspection: When reinstalling an existing chain, care should be taken to ensure that it is free of grit and dirt. If necessary, wash the chain in an approved solvent, paying particular attention to flexing the chain's joints while submerged, as this will allow contaminants within the chain's joints to be rinsed away. The chain should be allowed to thoroughly dry, removing any solvents that could reduce the operating lubricant's ability to protect the internal wear surfaces. Once dry, it is critical that the chain be relubricated prior to installation. Suggested lubricants can be determined from a list located later in this section.

When installing a new chain, the manufacturer's lubricant should not be removed. These lubricants were applied under special conditions to provide the best balance between initial wear resistance and surface protection.

Drive Alignment


Misalignment results in uneven loading across the width of the chain and may cause damage ranging from roller link plate and sprocket tooth wear up to and including premature failure from link plate fatigue. Proper drive alignment can be divided into two categories: parallel shafts and parallel sprockets.

Aligning Shafts: Shafts should be parallel and level. This condition may be checked by the use of a feeler bar and a level.

Aligning Sprockets: Sprocket axial alignment can be checked with a straight edge which will extend across the finished sides of the two sprockets. Normally, it is good practice to align the sprockets as close to the shaft bearings as possible. For long center distances, use a taut cord or wire long enough to extend beyond each of the sprockets.

Note: When shafts have appreciable "end float," sprockets should be aligned for the normal running position. Recheck after short running period for any signs of wear on inner faces of roller link plates.

Recheck all preceding adjustments and be certain all sprocket set-screws, as well as any additional hardware, are secure.

Roller Chain Installation

Chain and Connecting Link Installation

Installing the Chain: Fit chain around the sprockets in the drive and bring the free ends together, normally on one of the sprockets, for final connection. If the ends cannot be brought together on a common sprocket, the use of Diamond's chain connecting tool may be employed. Refer to the Chain Tools section of this guide for more detailed information on the connecting tool.

Installing the Connecting Link: The connecting link, depending upon the size and type of chain, may employ either a slip-fit or press-fit cover plate, combined with either a spring clip or cotters as the final retainer.

Press-fit cover plates, discussed in the General Drive Considerations section, are those which have an interference fit on the pins and provide integrity equal to the base chain itself. They do, however, present their own unique degree of difficulty at assembly.

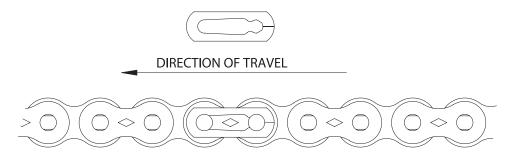
To assemble the press-fit cover plates:

- 1. Insert the "Master Link," the portion of the link that contains the pins, and provide support or backing to resist the forces needed to drive the cover plate on.
- 2. Place the press-fit cover plate over the exposed pin ends and ensure that it is aligned properly.
- 3. Drive the cover plate on until it is flush with the ends of the pins.
- 4. Obtain a hollow punch (perhaps a small piece of pipe or a discarded chain's roller) and locate it over/around the flush pin end.
- 5. Alternately from one pitch hole to the other, continue to drive the ends of the link plate onto the pins until it is clear of the spring clip groove or cotter hole. Care should be taken not to drive the plate on so far as to squeeze against or pinch the roller links. This will result in stiff or binding joints.
- 6. Install the retaining device, either spring clip or cotter.

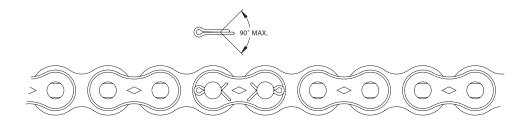
Caution: Never drill out or enlarge the pitch holes of a press-fit cover plate to make the installation easier. This will lower the integrity of the link.

Slip-fit cover plates, discussed in the General Drive Considerations section, are those which have a clearance fit on the pins. These connecting links are far easier to install but reduce the working load capacity of the chain.

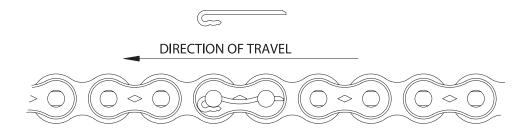
To assemble the slip-fit cover plate:


- 1. Insert the "Master Link," the portion of the link that contains the pins, into the chain.
- 2. Slide the plate over the pin ends to a location which clears either the spring clip groove or cotter hole.
- 3. Install the retaining device, either spring clip or cotter.

Note: When a slip-fit cover plate is used, a chain's working capacity can be reduced as much as 30%.

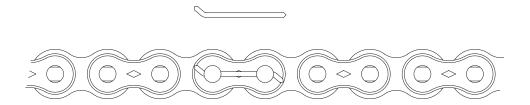

Roller Chain Installation

Retaining Devices

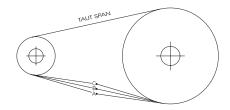

Spring clips are provided for chain models #25-#60 and provide a quick and easy method for securing the cover plate. Installation is performed by first determining the direction of chain travel and locating the closed end of the clip over the leading pin's groove. Final installation is performed by "snapping" the clip over the trailing pin locking it into the groove. Care should be taken not to bend or deform the clip during installation as this may cause it to come loose during operation.

Staggered-leg cotters are normally provided on #80 and larger models' connecting links as the method of retaining the cover plate. Diamond manufactures cotters and specially heat treats them to obtain specific properties which are beneficial in service. After insertion, the legs should not be spread in excess of 90° (included angle) and if removed should not be reused. It is not recommended to use commercial cotters as they may not provide satisfactory performance in severe applications.

Shepherd's crooks are available upon request for chain models #120-#160. These retaining devices secure the cover plate by passing through both pins of a connecting link with just a single pin. To install, first determine the direction of chain travel and then orient such that the hook-end of the device snaps onto the leading pin of the connecting link. The shepherd's crook should then be crimped slightly in the middle to minimize fretting.



Roller Chain Installation


Retaining Devices

Z-pin cotters are available upon request for chain models #120-#200. These retaining devices are another single-pin method of securing the cover plate. The pins are supplied bent on one end. To retain the cover plate, simply install the z-pin cotter through both pins of a connecting link until the bend stops insertion, then bend the leading end in the opposite direction.

Proper Chain Tension: It should be expected that new chains will elongate slightly more during the first few days of service than in the months of subsequent operation. This is due to the "running-in" of the chain which removes minute imperfections from the surfaces of the pins and bushings. Diamond chains are pre-stressed prior to shipment to remove the majority of this "run-in" but some slight amount should still be expected. Because of this, it is good practice to establish and adjust center distances or idlers for an initially snug-fitting chain. After the initial run-in period, the drive should always be adjusted so that there is some degree of slack in the unloaded section of chain. This slack is very important as it allows the pin/bushing joint to relubricate itself prior to entering the working or loaded portion of the drive.

The following represents recommended mid-span movements for a properly tensioned drive.

Recommended Possible Mid-Span Movement, A-C, of Slack Span

Dimensions in Inches

			2	011010110 111 1110					
Drive			Tangent Le	ngth Between	Sprockets				
Center-Line	5	10	15	20	30	40	60	80	100
Horizontal to 45	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
Vertical to 45	0.12	0.25	0.38	0.50	0.75	1.00	1.50	2.00	2.50

Roller Chain Lubrication

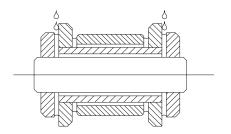
Roller chain drives suffer more harm from faulty lubrication than from years of normal service!!!

A roller chain consists of a series of connected journal bearings which must be properly lubricated to obtain the maximum service life. Although many slow speed drives operate successfully with little or no lubrication beyond that initially applied at the time of manufacture, continued proper lubrication will greatly extend the useful life of every chain drive.

Chain drives require lubrication for six primary purposes:

- 1. Resist wear of the pin-bushing joint.
- 2. Cushion impact loads.
- 3. Dissipate heat.
- 4. Flush away foreign materials.
- 5. Lubricate chain-sprocket contact surfaces.
- 6. Prevent rust or corrosion.

In selecting a lubricant, a good grade of clean petroleum oil without additives is most commonly recommended. Certain additives in oil can leave a varnish or gum buildup which will prevent additional lubricant from entering chain joints.

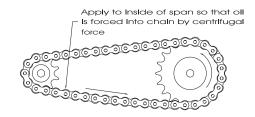

The viscosity of the lubricant greatly affects its ability to flow into the internal areas; therefore, the highest viscosity oil which will flow between the chain link plates and fill the pin-bushing areas will provide the greatest film thickness and best wear life.

Greases, applied to the exterior of the chain, serve no purpose with the exception of protecting the external surfaces from rust or corrosion and should not be relied upon to provide any internal lubricating benefits.

The following table provides a guideline for selecting the proper lubricant viscosity at various ambient temperatures:

Ambient			Recommended Lubricants		
Temperature Degrees F	SUS Viscosity 100 F	SAE Engine Oil	SAE Gear Oil	ISO	AGMA
20-40	200-400	20	80W	46 or 68	1 or 2
40-100	400-650	30	85W	100	3
100-120	650-950	40	90	150	4
120-140	950-1450	50	90	220	5

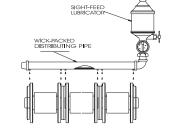
The elongation of roller chain is the result of wear caused by friction between the pins and bushings and regardless of the size or type of chain, in order for any lubricant to reach the critical pin/bushing area it should be applied to the upper edges of link plates in the slack span. Lubricant applied only to the chain's rollers will not provide an adequate supply to the internal wearing surfaces. However, the chain's rollers will receive adequate lubrication due to spillage over the link plate edges when lubricant is properly applied.



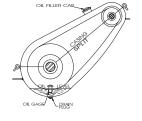
LUBRICANT FLOW INTO THE CHAIN JOINT

Roller Chain Lubrication

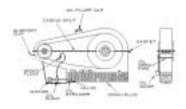
Note: When applying lubricant to multiple strand chain, it is important that lubricant be directed to each row of chain link plates, not just the outermost rows; and, in conveying applications, oil should be directed between the rollers and bushings as well as between the chain link plates, as significant wear can result from external loading.



Methods of Lubrication


APPLICATION OF LUBRICANT TO CHAIN

There are three basic methods of lubrication for roller chain drives. Close adherence to these recommended types of lubrication is essential in obtaining the maximum service life of a chain drive. These recommended types of lubrication, as shown in the horsepower rating tables, are determined by the chain speed and the amount of power transmitted.


Manual or Drip Lubrication (Type A): Lubricant applied manually with an oil can or brush is acceptable for slow speed drives, generally not over 600 feet per minute. When lubrication must be accomplished with a minimum amount of oil, it is advisable to equip the system with either felt pads or brushes which are fed by lubricant from a reservoir and carefully positioned to direct oil into the clearances between each row of link plates in the slack span of chain.

Bath Lubrication (Type B): Lubricant is applied to the chain by allowing the oil level within an enclosed casing to cover the chain at approximately the pitch line at its lowest point of operation. This is by far the most desirable method for chains operating at up to approximately 1500 feet per minute.

Forced or Circulating Lubrication (Type C): This is similar to bath lubrication with the exception that the lubricant is pumped onto the chain under pressure. The oil should be delivered to the upper edges of each row of link plates across the lower span of chain just prior to the chain's entry into one of the sprockets.

The following table can be used as a guide for determining the type of lubricating system based upon the speed of the chain in feet per minute. The final selection should, however, be based upon the type of lubrication system recommended in the horsepower rating tables for the specific chain, sprocket, speed and horsepower transmitted.

Chain Speed in Feet/Minute

Chain No.	35	40	50	60	80	100	120	140	160	200
Type A	350	300	250	215	165	145	125	110	100	80
Type B	2650	2200	1900	1750	1475	1250	1170	1050	1000	865
Type C			Uso	e for speeds hig	her than Type	B limits			•	

Roller Chain Maintenance

All chain drives should receive regular maintenance. Each drive should be inspected after the initial 100 hours of operation. Thereafter, most drives may be inspected at 500-hour intervals. However, drives subjected to shock loads or severe operating conditions should be inspected at more frequent intervals. This section will provide guidance as to what items should be evaluated during regular inspection intervals.

Drive Guarding

The strongest chain, built to the highest quality standards, still can break in normal service due to the effects of wear, fatigue, or unexpected overloads. Therefore, a roller chain drive should have adequate guarding to prevent personal injury or property damage.

If a roller chain breaks on a drive while operating at speed, the chain can be thrown off the sprockets with considerable force. The user should either provide adequate guarding to contain a broken chain, or prevent personnel from entering an area where a broken chain could strike them.

There are applications where a broken chain could release a load and cause personal injury or property damage. Provisions for a brake or other restraining device which will stop and hold the load in the event of a broken chain should be incorporated into the machinery's design.

Regular Inspections: At each inspection, the following items should be checked, the condition corrected, or the chain replaced as necessary:

1. Check Lubrication

On slow speed drives, be sure the lubrication schedule is being followed and if the chain is covered with dirt and debris, clean the chain with an approved solvent and relubricate it. If drip lubrication is used, check for adequate oil flow and be sure it is being applied at the proper location on the chain. (Refer to the Lubrication section.)

With bath or pump lubrication, check oil level and add oil if needed. Check oil for contamination and change oil as needed. It is recommended to change the oil after the first 100 hours of operation and each 500 hours thereafter. If pump lubrication is used, check each orifice to be sure it is clear and is directing oil onto the chain properly.

2. Check Chain Tension

Refer to the Installation section and check chain tension. Adjust the drive as needed to maintain the proper sag in the slack span. If elongation exceeds the available adjustment, remove two pitches of chain and reconnect.

3. Check Chain Wear

Roller chains should be replaced promptly when worn (elongated beyond 3%) or when the chain rollers begin to "ride high" near the tips of the teeth on relatively large sprockets. If the chain is worn excessively, replace the entire chain. Do not connect or splice a new section to a worn chain. Do not continue to run a chain, worn in excess of 3% (or less in some applications), because the chain will not engage the sprockets properly and increased damage to the sprockets may occur.

Contact Diamond Chain for your free wear guage.

Roller Chain Maintenance

4. Check Sprocket Tooth Wear

Check for roughness or binding when the chain engages or disengages from the sprocket. Inspect the sprocket teeth for reduced tooth section and "hooked" tooth tips. If these conditions are present, the sprocket teeth are excessively wom and the sprocket should be replaced. Do not run new chain on worn sprockets as it will cause the new chain to wear rapidly. Conversely, do not run a worn chain on new sprockets as it will cause the new sprockets to wear rapidly. As a *general* rule, replace the sprockets with every third chain replacement.

TOOTH FORM ALTERED DUE TO WEAR

5. Check Sprocket Alignment

If there is noticeable wear on the inside surfaces of the chain roller link plates, the sprockets may be misaligned. Realign the sprockets as outlined in the Installation section to prevent further abnormal chain and sprocket wear.

6. Check for Drive Interference

Check for interference between the drive and other parts of the equipment. If there is any, correct it immediately. Interference can cause abnormal and potentially destructive wear on the chain or the interfering part. If the edges of the chain link plates impact against a rigid part, link plate fatigue and chain failure can result.

Check for and eliminate any buildup of debris or foreign material between the chain and sprockets. A relatively small amount of debris in the sprocket roll seat can cause tensile loads great enough to break the chain if forced through the drive.

7. Check for Failure

Inspect the chain for cracked, broken, or deformed parts. If any of these conditions are found, replace the entire chain. Even though portions of the chain may appear to be in good condition, in all likelihood, the entire chain has been damaged.

Warning: Roller chains that have been damaged under excessive loading due to an accident, or otherwise, should be completely replaced because the chain, as well as the damaged component, has been loaded to a degree that has impaired its ability to transmit normal loading.

8. Evidence of Lubrication

One of the first indications that a roller chain is not receiving adequate lubrication is that the external areas around the joints will most likely have a reddish/brown (rusty) color. The inadequate lubrication can be confirmed by removing a link (most commonly the connecting link) and examining the surface of the pins. The color of the pins will generally be dark brown, even blue, if the chain has been running with inadequate lubrication. Additionally, the surface of poorly lubricated pins will be rough, grooved, or even show evidence of galling.

Properly lubricated chains will not exhibit the rusty color at the joints, and the pins of the connecting links, when removed, will be generally smooth, shiny and have an obvious coating of lubricant on the surface.

Horsepower Rating Tables

The Horsepower Rating Tables found on the following pages cover Standard Series, Heavy Series and Double-Pitch roller chains. Additionally, Horsepower Rating Tables for Diamond's RING LEADER® O-ring chains, from $\frac{5}{8}$ " through $1-\frac{1}{4}$ " pitch are also included.

The power transmission capacity rating listed in the following tables are based upon these conditions:

- 1. A service factor of one.
- 2. Chain length of 100 pitches.
- 3. The use of recommended methods of lubrication.
- 4. A two-sprocket drive, properly aligned and mounted on parallel horizontal shafts.
- 5. A non-abrasive environment.

Under the above conditions, a service life of approximately 15,000 hours can be expected.

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 25

# of teeth										Revo	lutions	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	50	100	300	365	500	700	900	1200	1500	1800	2100	2500	3000	3500	4000	4500	5000	5500	6000	7000	8000	9000	10000	11000	12000
11	0.03	0.06	0.19	0.22	0.30	0.42	0.53	0.70	0.87	1.03	1.20	1.42	1.69	1.69	1.38	1.16	0.99	0.86	0.75	0.60	0.49	0.41	0.35	0.30	0.27
12	0.04	0.07	0.20	0.24	0.33	0.46	0.58	0.76	0.95	1.13	1.31	1.55	1.84	1.92	1.57	1.32	1.12	0.97	0.86	0.68	0.56	0.47	0.40	0.34	0.30
13	0.04	0.08	0.22	0.26	0.36	0.49	0.63	0.83	1.03	1.22	1.42	1.67	1.99	2.17	1.77	1.49	1.27	1.10	0.96	0.77	0.63	0.53	0.45	0.39	0.34
14	0.04	0.08	0.24	0.28	0.38	0.53	0.68	0.89	1.10	1.32	1.52	1.80	2.15	2.42	1.98	1.66	1.42	1.23	1.08	0.86	0.70	0.59	0.50	0.43	0.38
15	0.05	0.09	0.25	0.30	0.41	0.57	0.72	0.95	1.18	1.41	1.63	1.93	2.30	2.67	2.20	1.84	1.57	1.36	1.20	0.95	0.78	0.65	0.56	0.48	0.42
16	0.05	0.09	0.27	0.32	0.44	0.61	0.77	1.02	1.26	1.50	1.74	2.06	2.45	2.85	2.42	2.03	1.73	1.50	1.32	1.05	0.86	0.72	0.61	0.53	0.47
17	0.05	0.10	0.29	0.35	0.47	0.64	0.82	1.08	1.34	1.60	1.85	2.19	2.61	3.02	2.65	2.22	1.90	1.64	1.44	1.14	0.94	0.79	0.67	0.58	0.51
18	0.05	0.11	0.30	0.37	0.49	0.68	0.87	1.15	1.42	1.69	1.96	2.32	2.76	3.20	2.89	2.42	2.07	1.79	1.57	1.25	1.02	0.86	0.73	0.63	0.56
19	0.06	0.11	0.32	0.39	0.52	0.72	0.92	1.21	1.50	1.78	2.07	2.45	2.91	3.38	3.13	2.62	2.24	1.94	1.70	1.35	1.11	0.93	0.79	0.69	
20	0.06	0.12	0.34	0.41	0.55	0.76	0.97	1.27	1.58	1.88	2.18	2.58	3.07	3.56	3.38	2.83	2.42	2.10	1.84	1.46	1.20	1.00	0.86	0.74	
21	0.06	0.12	0.35	0.43	0.58	0.80	1.01	1.34	1.66	1.97	2.29	2.70	3.22	3.74	3.64	3.05	2.60	2.26	1.98	1.57	1.29	1.08	0.92		
22	0.07	0.13	0.37	0.45	0.60	0.83	1.06	1.40	1.73	2.07	2.40	2.83	3.37	3.91	3.90	3.27	2.79	2.42	2.12	1.69	1.38	1.16	0.99		
23	0.07	0.13	0.39	0.47	0.63	0.87	1.11	1.46	1.81	2.16	2.51	2.96	3.53	4.09	4.17	3.50	2.98	2.59	2.27	1.80	1.47	1.24	1.04		
24	0.07	0.14	0.40	0.49	0.66	0.91	1.16	1.53	1.89	2.25	2.61	3.09	3.68	4.27	4.45	3.73	3.18	2.76	2.42	1.92	1.57	1.32	0.22		
25	0.08	0.15	0.42	0.51	0.69	0.95	1.21	1.59	1.97	2.35	2.72	3.22	3.84	4.45	4.73	3.96	3.38	2.93	2.57	2.04	1.67	1.40			
26	0.08	0.15	0.44	0.53	0.71	0.99	1.26	1.65	2.05	2.44	2.83	3.35	3.99	4.62	5.01	4.20	3.59	3.11	2.73	2.17	1.77	1.49			
28	0.08	0.16	0.47	0.57	0.77	1.06	1.35	1.78	2.21	2.63	3.05	3.61	4.30	4.98	5.60	4.70	4.01	3.47	3.05	2.42	1.98				
30	0.09	0.18	0.50	0.61	0.82	1.14	1.45	1.91	2.37	2.82	3.27	3.86	4.60	5.34	6.07	5.21	4.45	3.85	3.38	2.68	1.98				
32	0.10	0.19	0.54	0.65	0.88	1.21	1.55	2.04	2.52	3.01	3.49	4.12	4.91	5.69	6.47	5.74	4.90	4.25	3.73	2.96	0.35				
35	0.11	0.21	0.59	0.71	0.96	1.33	1.69	2.23	2.76	3.29	3.81	4.51	5.37	6.23	7.08	6.56	5.60	4.86	4.26	2.76					
40	0.12	0.23	0.67	0.81	1.10	1.52	1.93	2.55	3.15	3.76	4.36	5.15	6.14	7.11	8.09	8.02	6.85	5.93	4.91						
45	0.14 0.26 0.76 0.91 1.24 1.71 2.17 2.86 3.55								3.55	4.23	4.90	5.79	6.90	8.00	9.10	9.57	8.17	5.23	1.38						
	TYPE	E A LUE	BRICAT	ION				TYPE B	LUBRI	CATIO	٧							TY	PE C LI	JBRICA	TION				

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 35

# of teeth										Revo	lution	s Per N	/linute	– Sma	all Spr	ocket									
in small sprocket	50	100	200	240	500	700	900	1200	1500	1800	2100	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	9000	10000
11	0.11	0.22	0.42	0.50	1.02	1.41	1.80	2.37	2.93	3.49	4.05	3.86	2.94	2.33	1.91	1.60	1.37	1.18	1.04	0.92	0.82	0.74	0.67	0.57	0.48
12	0.12	0.24	0.46	0.55	1.11	1.54	1.96	2.58	3.20	3.81	4.42	4.40	3.35	2.66	2.17	1.82	1.56	1.35	1.18	1.05	0.94	0.85	0.77	0.64	0.55
13	0.13	0.26	0.50	0.60	1.21	1.67	2.12	2.80	3.47	4.13	4.79	4.96	3.77	3.00	2.45	2.05	1.75	1.52	1.33	1.18	1.06	0.95	0.87	0.73	0.62
14	0.14	0.28	0.54	0.64	1.30	1.80	2.29	3.01	3.73	4.45	5.15	5.55	4.22	3.35	2.74	2.30	1.96	1.70	1.49	1.32	1.18	1.07	0.97	0.81	0.10
15	0.15	0.30	0.58	0.69	1.39	1.92	2.45	3.23	4.00	4.76	5.52	6.15	4.68	3.71	3.04	2.55	2.17	1.88	1.65	1.47	1.31	1.18	1.07	0.90	
16	0.16	0.32	0.62	0.73	1.49	2.05	2.61	3.44	4.26	5.08	5.89	6.77	5.15	4.09	3.35	2.81	2.40	2.08	1.82	1.62	1.45	1.30	1.18	0.44	
17	0.17	0.34	0.65	0.78	1.58	2.18	2.77	3.66	4.53	5.40	6.26	7.40	5.64	4.48	3.67	3.07	2.62	2.27	2.00	1.77	1.58	1.43	1.30		
18	0.18	0.36	0.69	0.83	1.67	2.31	2.94	3.87	4.80	5.72	6.63	7.83	6.15	4.88	3.99	3.35	2.86	2.48	2.17	1.93	1.73	1.56	1.41		
19	0.19	0.38	0.73	0.87	1.76	2.44	3.10	4.09	5.06	6.03	7.00	8.27	6.67	5.29	4.33	3.63	3.10	2.69	2.36	2.09	1.87	1.69	0.05		
20	0.20	0.40	0.77	0.92	1.86	2.56	3.26	4.30	5.33	6.35	7.36	8.71	7.20	5.72	4.68	3.92	3.35	2.90	2.55	2.26	2.02	1.42			
21	0.21	0.42	0.81	0.96	1.95	2.69	3.43	4.52	5.60	6.67	7.73	9.14	7.75	6.15	5.03	4.22	3.60	3.12	2.74	2.43	2.17				
22	0.22	0.44	0.85	1.01	2.04	2.82	3.59	4.73	5.86	6.99	8.10	9.58	8.31	6.59	5.40	4.52	3.86	3.35	2.94	2.61	1.42				
23	0.23	0.46	0.89	1.06	2.14	2.95	3.75	4.95	6.13	7.30	8.47	10.01	8.88	7.05	5.77	4.83	4.13	3.58	3.14	2.79					
24	0.24	0.48	0.92	1.10	2.23	3.08	3.92	5.16	6.40	7.62	8.84	10.45	9.47	7.51	6.15	5.15	4.40	3.81	3.35	2.04					
25	0.25	0.50	0.96	1.15	2.32	3.21	4.08	5.38	6.66	7.94	9.20	10.88	10.07	7.99	6.54	5.48	4.68	4.05	3.56	0.12					
26	0.26	0.51	1.00	1.19	2.41	3.33	4.24	5.59	6.93	8.26	9.57	11.32	10.68	8.47	6.93	5.81	4.96	4.30	3.40						
28	0.29	0.55	1.08	1.28	2.60	3.59	4.57	6.02	7.46	8.89	10.31	12.19	11.93	9.47	7.75	6.49	5.55	4.81							
30	0.31	0.59	1.16	1.38	2.79	3.85	4.90	6.45	8.00	9.53	11.05	13.06	13.23	10.50	8.59	7.20	6.15	2.24							
32	0.33	0.63	1.23	1.47	2.97	4.10	5.22	6.88	8.53	10.16	11.78	13.93	14.58	11.57	9.47	7.93	5.76								
35	0.36	0.69	1.35	1.61	3.25	4.49	5.71	7.53	9.33	11.11	12.89	15.23	16.67	13.23	10.83	8.85	0.34								
40	0.41	0.79	1.54	1.84	3.71	5.13	6.53	8.61	10.66	12.70	14.73	17.41	20.37	16.17	11.04	0.34									
45	0.46 0.89 1.73 2.07 4.18 5.77 7.35 9.68 11.99									14.29	16.57	19.59	23.33	15.56	3.11										
	TYPE A LUBE TYPE B LUBRICATION																TYPE	C LUBF	RICATIO	N					

Horsepower Ratings - Single Strand Roller Chain No. 40

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	100	180	200	300	500	700	900	1000	1200	1400	1600	1800	2100	2500	3000	3500	4000	5000	6000	7000	8000	9000
11	0.06	0.14	0.27	0.52	0.91	1.00	1.48	2.42	3.34	4.25	4.70	5.60	6.49	5.57	4.66	3.70	2.85	2.17	1.72	1.41	1.01	0.77	0.61	0.50	
12	0.06	0.15	0.29	0.56	0.99	1.09	1.61	2.64	3.64	4.64	5.13	6.11	7.09	6.34	5.31	4.22	3.25	2.47	1.96	1.60	1.15	0.87	0.69	0.57	
13	0.07	0.16	0.31	0.61	1.07	1.19	1.75	2.86	3.95	5.02	5.56	6.62	7.68	7.15	5.99	4.76	3.66	2.79	2.21	1.81	1.29	0.98	0.78		
14	0.07	0.17	0.34	0.66	1.15	1.28	1.88	3.08	4.25	5.41	5.98	7.13	8.27	7.99	6.70	5.31	4.09	3.11	2.47	2.02	1.45	1.10	0.87		
15	0.08	0.19	0.36	0.70	1.24	1.37	2.02	3.30	4.55	5.80	6.41	7.64	8.86	8.86	7.43	5.89	4.54	3.45	2.74	2.24	1.60	1.22	0.97		
16	0.08	0.20	0.39	0.75	1.32	1.46	2.15	3.52	4.86	6.18	6.84	8.15	9.45	9.76	8.18	6.49	5.00	3.80	3.02	2.47	1.77	1.34			
17	0.09	0.21	0.41	0.80	1.40	1.55	2.29	3.74	5.16	6.57	7.27	8.66	10.04	10.69	8.96	7.11	5.48	4.17	3.31	2.71	1.94	1.47			
18	0.09	0.22	0.43	0.84	1.48	1.64	2.42	3.96	5.46	6.95	7.69	9.17	10.63	11.65	9.76	7.75	5.97	4.54	3.60	2.95	2.11	1.60			
19	0.10	0.24	0.46	0.89	1.57	1.73	2.56	4.18	5.77	7.34	8.12	9.68	11.22	12.64	10.59	8.40	6.47	4.92	3.91	3.20	2.29	0.09			
20	0.10	0.25	0.48	0.94	1.65	1.82	2.69	4.39	6.07	7.73	8.55	10.18	11.81	13.42	11.44	9.07	6.99	5.31	4.22	3.45	2.47				
21	0.11	0.26	0.51	0.98	1.73	1.91	2.83	4.61	6.37	8.11	8.98	10.69	12.40	14.10	12.30	9.76	7.52	5.72	4.54	3.71	2.66				
22	0.11	0.27	0.53	1.03	1.81	2.01	2.96	4.83	6.68	8.50	9.40	11.20	12.99	14.77	13.19	10.47	8.06	6.13	4.87	3.98	2.85				
23	0.12	0.28	0.55	1.08	1.90	2.10	3.10	5.05	6.98	8.89	9.83	11.71	13.58	15.44	14.10	11.19	8.62	6.55	5.20	4.26	3.05				
24	0.12	0.30	0.58	1.12	1.98	2.19	3.23	5.27	7.28	9.27	10.26	12.22	14.17	16.11	15.03	11.93	9.18	6.99	5.54	4.54	0.87				
25	0.13	0.31	0.60	1.17	2.06	2.28	3.36	5.49	7.59	9.66	10.69	12.73	14.76	16.78	15.98	12.68	9.76	7.43	5.89	4.82					
26	0.13	0.32	0.63	1.22	2.14	2.37	3.50	5.71	7.89	10.04	11.11	13.24	15.35	17.45	16.95	13.45	10.36	7.88	6.25	5.12					
28	0.14	0.35	0.67	1.31	2.31	2.55	3.77	6.15	8.50	10.82	11.97	14.26	16.53	18.79	18.94	15.03	11.57	8.80	6.99	5.72					
30	0.15	0.37	0.72	1.41	2.47	2.74	4.04	6.59	9.11	11.59	12.82	15.28	17.71	20.14	21.01	16.67	12.84	9.76	7.75	6.34					
32	0.16	0.40	0.77	1.50	2.64	2.92	4.31	7.03	9.71	12.36	13.68	16.30	18.89	21.48	23.14	18.37	14.14	10.76	8.54	1.41					
35	0.18	0.43	0.84	1.64	2.88	3.19	4.71	7.69	10.62	13.52	14.96	17.82	20.67	23.49	26.30	21.01	16.17	12.30	9.76						
40	0.21	0.50	0.96	1.87	3.30	3.65	5.38	8.79	12.14	15.45	17.10	20.37	23.62	26.85	30.06	25.67	19.76	15.03							
45	0.23 0.56 1.08 2.11 3.71 4.10 6.06 9.89 13.66 17.39											22.92	26.57	30.20	33.82	30.63	23.58	5.53							
	٦	ΓΥΡΕ A	LUBE					TYPE B	LUBRI	ICATION	٧							TYI	PE C LI	JBRICA	TION				

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 41

# of teeth										Revo	lutions	s Per N	/linute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	100	180	200	300	500	700	900	1000	1200	1400	1600	1800	2100	2500	3000	3500	4000	5000	6000	7000	8000	9000
11	0.03	0.07	0.15	0.28	0.50	0.55	0.81	1.33	1.84	2.34	2.25	1.71	1.36	1.11	0.93	0.74	0.57	0.43	0.34	0.28	0.20	0.15	0.12	0.10	
12	0.03	0.08	0.16	0.31	0.54	0.60	0.89	1.45	2.00	2.55	2.57	1.95	1.55	1.27	1.06	0.84	0.65	0.49	0.39	0.32	0.23	0.17	0.14	0.11	
13	0.04	0.09	0.17	0.34	0.59	0.65	0.96	1.57	2.17	2.76	2.89	2.20	1.75	1.43	1.20	0.95	0.73	0.56	0.44	0.36	0.26	0.20	0.16		
14	0.04	0.10	0.19	0.36	0.63	0.70	1.04	1.69	2.34	2.97	3.23	2.46	1.95	1.60	1.34	1.06	0.82	0.62	0.49	0.40	0.29	0.22	0.17		
15	0.04	0.10	0.20	0.39	0.68	0.75	1.11	1.81	2.50	3.19	3.53	2.73	2.17	1.77	1.49	1.18	0.91	0.69	0.55	0.45	0.32	0.24	0.19		
16	0.05	0.11	0.21	0.41	0.73	0.80	1.18	1.93	2.67	3.40	3.76	3.01	2.39	1.95	1.64	1.30	1.00	0.76	0.60	0.49	0.35	0.27			
17	0.05	0.12	0.23	0.44	0.77	0.85	1.26	2.05	2.84	3.61	4.00	3.29	2.61	2.14	1.79	1.42	1.10	0.83	0.66	0.54	0.39	0.29			
18	0.05	0.12	0.24	0.46	0.82	0.90	1.33	2.18	3.00	3.82	4.23	3.59	2.85	2.33	1.95	1.55	1.19	0.91	0.72	0.59	0.42	0.32			
19	0.05	0.13	0.25	0.49	0.86	0.95	1.41	2.30	3.17	4.04	4.47	3.89	3.09	2.53	2.12	1.68	1.29	0.98	0.78	0.64	0.46	0.09			
20	0.06	0.14	0.27	0.52	0.91	1.00	1.48	2.42	3.34	4.25	4.70	4.20	3.33	2.73	2.29	1.81	1.40	1.06	0.84	0.69	0.49				
21	0.06	0.14	0.28	0.54	0.95	1.05	1.55	2.54	3.51	4.46	4.94	4.52	3.59	2.94	2.46	1.95	1.50	1.14	0.91	0.74	0.53				
22	0.06	0.15	0.29	0.57	1.00	1.10	1.63	2.66	3.67	4.67	5.17	4.85	3.85	3.15	2.64	2.09	1.61	1.23	0.97	0.80	0.57				
23	0.07	0.16	0.30	0.59	1.04	1.15	1.70	2.78	3.84	4.89	5.41	5.18	4.11	3.37	2.82	2.24	1.72	1.31	1.04	0.85	0.61				
24	0.07	0.16	0.32	0.62	1.09	1.20	1.78	2.90	4.01	5.10	5.64	5.52	4.38	3.59	3.01	2.39	1.84	1.40	1.11	0.91	0.65				
25	0.07	0.17	0.33	0.64	1.13	1.25	1.85	3.02	4.17	5.31	5.88	5.87	4.66	3.81	3.20	2.54	1.95	1.49	1.18	0.96					
26	0.07	0.18	0.34	0.67	1.18	1.30	1.92	3.14	4.34	5.52	6.11	6.23	4.94	4.05	3.39	2.69	2.07	1.58	1.25	1.02					
28	0.08	0.19	0.37	0.72	1.27	1.40	2.07	3.38	4.67	5.95	6.58	6.96	5.52	4.52	3.79	3.01	2.31	1.76	1.40	1.14					
30	0.08	0.20	0.40	0.77	1.36	1.50	2.22	3.63	5.01	6.37	7.05	7.72	6.13	5.01	4.20	3.33	2.57	1.95	1.55	1.27					
32	0.09	0.22	0.42	0.82	1.45	1.60	2.37	3.87	5.34	6.80	7.52	8.50	6.75	5.52	4.63	3.67	2.83	2.15	1.71	1.40					
35	0.10	0.24	0.46	0.90	1.59	1.76	2.59	4.23	5.84	7.44	8.23	9.80	7.72	6.32	5.29	4.20	3.23	2.46	1.95						
40	0.11	0.27	0.53	1.03	1.81	2.01	2.96	4.83	6.68	8.50	9.40	11.20	9.43	7.72	6.47	5.13	3.95	3.01							
45													11.25	9.21	7.72	6.13	4.72	3.59							
	TYPE	E A LUI	BRICAT	ION			-	ГҮРЕ В	LUBRI	CATIO	١							TY	PE C LI	JBRICA	TION				

Horsepower Ratings - Single Strand Roller Chain No. 50

# of teeth										Revo	lution	s Per I	Vinute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	100	140	200	300	500	700	900	1200	1500	1800	2100	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500
11	0.11	0.27	0.52	1.00	1.39	1.95	2.88	4.70	6.50	8.27	10.24	7.33	5.58	4.42	3.41	2.59	2.06	1.68	1.41	1.20	1.04	0.92	0.81	0.73	
12	0.12	0.29	0.56	1.09	1.51	2.13	3.14	5.13	7.09	9.02	11.67	8.35	6.35	5.04	3.88	2.95	2.34	1.92	1.61	1.37	1.19	1.04	0.93		
13	0.13	0.31	0.61	1.19	1.64	2.31	3.40	5.56	7.68	9.77	12.88	9.42	7.16	5.69	4.38	3.33	2.64	2.16	1.81	1.55	1.34	1.18			
14	0.14	0.34	0.66	1.28	1.76	2.48	3.67	5.99	8.27	10.53	13.87	10.52	8.01	6.35	4.89	3.72	2.95	2.42	2.03	1.73	1.50	0.28			
15	0.15	0.36	0.70	1.37	1.89	2.66	3.93	6.41	8.86	11.28	14.86	11.67	8.88	7.05	5.42	4.13	3.27	2.68	2.25	1.92	1.66				
16	0.16	0.39	0.75	1.46	2.02	2.84	4.19	6.84	9.45	12.03	15.85	12.86	9.78	7.76	5.98	4.55	3.61	2.95	2.47	2.11					
17	0.17	0.41	0.80	1.55	2.14	3.02	4.45	7.27	10.04	12.78	16.85	14.08	10.71	8.50	6.55	4.98	3.95	3.23	2.71	2.31					
18	0.18	0.43	0.84	1.64	2.27	3.19	4.71	7.70	10.63	13.53	17.84	15.34	11.67	9.26	7.13	5.42	4.30	3.52	2.95	0.05					
19	0.19	0.46	0.89	1.73	2.39	3.37	4.98	8.12	11.22	14.28	18.83	16.64	12.66	10.05	7.73	5.88	4.67	3.82	3.20						
20	0.20	0.48	0.94	1.82	2.52	3.55	5.24	8.55	11.81	15.04	19.82	17.97	13.67	10.85	8.35	6.35	5.04	4.13	3.46						
21	0.21	0.51	0.98	1.92	2.65	3.73	5.50	8.98	12.40	15.79	20.81	19.34	14.71	11.67	8.99	6.84	5.42	4.44							
22	0.22	0.53	1.03	2.01	2.77	3.90	5.76	9.41	12.99	16.54	21.80	20.73	15.77	12.52	9.64	7.33	5.82	4.76							
23	0.23	0.55	1.08	2.10	2.90	4.08	6.02	9.83	13.58	17.29	22.79	22.16	16.86	13.38	10.30	7.84	6.22	5.09							
24	0.24	0.58	1.13	2.19	3.02	4.26	6.28	10.26		18.04	23.78	23.62			10.98	8.35	6.63	1.36							
25	0.25	0.60	1.17	2.28	3.15	4.44	6.55	10.69	14.77		24.77	25.11		15.16	11.67	8.88	7.05								
26	0.26	0.63	1.22	2.37	3.28	4.61	6.81	11.12	15.36	19.55	25.76	26.64	20.26	16.08	12.38	9.42	7.47								
28	0.28	0.67	1.31	2.55	3.53	4.97	7.33	11.97	16.54	21.05	27.75	29.77	22.65	17.97	13.84	10.52	4.74								
30	0.20	0.07	1.41	2.74	3.78	5.32	7.86	12.83		22.55	29.73	33.01	25.11	19.93		11.67	4.74								
32	0.32	0.72	1.50	2.92	4.03	5.68	8.38	13.68	18.90		31.71	36.37		21.96	16.90	12.86									
35	0.35	0.84	1.64	3.19	4.41	6.21	9.16	14.97		26.31	34.68				19.34	0.94									
							10.47																		
40 45	0.40 0.45	0.96 1.08	1.88 2.11	3.65 4.10	5.04 5.67	7.10 7.98		17.10 19.24	23.63		39.64 44.59	49.11 55.24	38.67 46.14	30.68	23.62 8.64										
40		E A LUE			5.07			BRICAT		JJ.03	44.09	55.24	40.14	30.01	0.04		TYPF	C LUBE	RICATIO	N.					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 60

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	100	120	200	300	400	500	600	800	1000	1200	1400	1600	1800	2000	2500	3000	3500	4000	4500	5000	5500	6000
11	0.19	0.46	0.89	1.72	2.05	3.35	4.95	6.52	8.08	9.63	12.69	15.58	11.85	9.41	7.70	6.45	5.51	3.94	3.00	2.38	1.95	1.63	1.39	1.21	
12	0.21	0.50	0.97	1.88	2.24	3.66	5.40	7.12	8.82	10.51	13.85	17.15	13.51	10.72	8.77	7.35	6.28	4.49	3.42	2.71	2.22	1.86	1.59	1.38	
13	0.22	0.54	1.05	2.04	2.43	3.96	5.85	7.71	9.55	11.38	15.00	18.58	15.23	12.08	9.89	8.29	7.08	5.06	3.85	3.06	2.50	2.10	1.79		
14	0.24	0.58	1.13	2.19	2.61	4.27	6.30	8.30	10.29	12.26	16.15	20.01	17.02	13.51	11.05	9.26	7.91	5.66	4.31	3.42	2.80	2.34	0.41		
15	0.26	0.62	1.21	2.35	2.80	4.57	6.75	8.90	11.02	13.13	17.31	21.44	18.87	14.98	12.26	10.27	8.77	6.28	4.77	3.79	3.10	2.60			
16	0.27	0.66	1.29	2.51	2.99	4.88	7.20	9.49	11.76	14.01	18.46	22.87	20.79	16.50	13.51	11.32	9.66	6.91	5.26	4.17	3.42	1.78			
17	0.29	0.70	1.37	2.66	3.17	5.18	7.65	10.08	12.49	14.88	19.62	24.30	22.77	18.07	14.79	12.40	10.58	7.57	5.76	4.57	3.74				
18	0.31	0.75	1.45	2.82	3.36	5.49	8.10	10.68	13.23	15.76	20.77	25.73	24.81	19.69	16.11	13.51	11.53	8.25	6.28	4.98	4.08				
19	0.33	0.79	1.53	2.98	3.55	5.79	8.55	11.27	13.96	16.63	21.92	27.16	26.91	21.35	17.48	14.65	12.50	8.95	6.81	5.40	0.20				
20	0.34	0.83	1.61	3.13	3.73	6.10	9.00	11.86	14.70	17.51	23.08	28.59	29.06	23.06	18.87	15.82	13.51	9.66	7.35	5.83					
21	0.36	0.87	1.69	3.29	3.92	6.40	9.45	12.46	15.43	18.38	24.23	30.02	31.26	24.81	20.31	17.02	14.53	10.40	7.91	6.28					
22	0.38	0.91	1.77	3.45	4.11	6.71	9.90	13.05	16.17	19.26	25.39	31.45	33.52	26.60	21.77	18.25	15.58	11.15	8.48						
23	0.40	0.95	1.85	3.61	4.29	7.01	10.35	13.64	16.90	20.13	26.54	32.88	35.84	28.44	23.28	19.51	16.66	11.92	9.07						
24	0.41	0.99	1.93	3.76	4.48	7.32	10.80	14.24	17.64	21.01	27.69	34.31	38.20	30.31	24.81	20.79	17.75	12.70	9.66						
25	0.43	1.04	2.01	3.92	4.67	7.62	11.25	14.83	18.37	21.89	28.85	35.74	40.61	32.23	26.38	22.11	18.87	13.51	10.27						
26	0.45	1.08	2.09	4.08	4.85	7.93	11.70	15.42	19.11	22.76	30.00	37.17	43.07	34.18	27.98	23.44	20.02	14.32	10.90						
28	0.48	1.16	2.26	4.39	5.23	8.54	12.60	16.61	20.58	24.51	32.31	40.03	47.68	38.20	31.26	26.20	22.37	16.01							
30	0.52	1.24	2.42	4.70	5.60	9.15	13.50	17.79	22.05	26.26	34.62	42.89	51.09	42.36	34.67	29.06	24.81	17.75							
32	0.55	1.33	2.58	5.02	5.98	9.76	14.40	18.98	23.52	28.01	36.92	45.75	54.50	46.67	38.20	32.01	27.33	19.56							
35	0.60	1.45	2.82	5.49	6.54	10.67	15.75	20.76	25.72	30.64	40.39	50.03	59.60	53.38	43.69	36.62	31.26	1.35							
40	0.69	1.66	3.22	6.27	7.47	12.20	18.00	23.73	29.39	35.02	46.16	57.18	68.12	65.22	53.38	44.74	38.20								
45	0.77	1.86	3.63	7.05	8.40	13.72	20.25	26.69	33.07	39.39	51.92	64.33	76.63	77.83	63.70	53.38	12.45								
	TYP	E A LUI	BRICAT	ION			ГҮРЕ В	LUBRI	CATION	1							TY	PE C LU	JBRICA	TION					

Horsepower Ratings - Single Strand Roller Chain No. 60H

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	90	100	200	300	400	500	600	800	1000	1200	1400	1600	1800	2000	2500	3000	3500	4000	4500	5000	5500	6000
11	0.22	0.53	1.02	1.80	1.99	3.87	5.72	7.53	9.33	11.12	14.66	15.58	11.85	9.41	7.70	6.45	5.51	3.94	3.00	2.38	1.95	1.63	1.39	1.21	
12	0.24	0.57	1.12	1.96	2.17	4.23	6.24	8.22	10.18	12.13	15.99	17.75	13.51	10.72	8.77	7.35	6.28	4.49	3.42	2.71	2.22	1.86	1.59		
13	0.26	0.62	1.21	2.13	2.35	4.58	6.76	8.90	11.03	13.14	17.32		15.23	12.08	9.89	8.29	7.08	5.06	3.85	3.06	2.50	2.10	1.79		
14	0.28	0.67	1.30	2.29	2.53	4.93	7.27	9.59	11.88	14.15	18.65	22.37	17.02	13.51	11.05	9.26	7.91	5.66	4.31	3.42	2.80	2.34			
15	0.30	0.72	1.40	2.45	2.71	5.28	7.79	10.27	12.73	15.16	19.99	24.76	18.87	14.98	12.26	10.27	8.77	6.28	4.77	3.79	3.10	2.60			
16										16.17	21.32	26.41	20.79	16.50	13.51	11.32	9.66	6.91	5.26	4.17	3.42				
17	0.34	0.81	1.58	2.78	3.08	5.99	8.83	11.64	14.43	17.18	22.65	28.06	22.77	18.07	14.79	12.40	10.58	7.57	5.76	4.57	3.74				
18	0.36	0.86	1.67	2.94	3.26	6.34	9.35	12.33	15.27	18.20	23.98	29.71	24.81	19.69	16.11	13.51	11.53	8.25	6.28	4.98	1.06				
19	0.38	0.91	1.77	3.11	3.44	6.69	9.87	13.01	16.12	19.21	25.32	31.36	26.91	21.35	17.48	14.65	12.50	8.95	6.81	5.40					
20	0.40	0.96	1.86	3.27	3.62	7.04	10.39	13.70	16.97	20.22	26.65	33.01	29.06	23.06	18.87	15.82	13.51	9.66	7.35	5.83					
21	0.42	1.00	1.95	3.44	3.80	7.39	10.91	14.38	17.82	21.23	27.98	34.66	31.26	24.81	20.31	17.02	14.53	10.40	7.91	4.87					
22	0.44	1.05	2.05	3.60	3.98	7.75	11.43	15.07	18.67	22.24	29.31	36.32	33.52	26.60	21.77	18.25	15.58	11.15	8.48						
23	0.46	1.10	2.14	3.76	4.16	8.10	11.95	15.75	19.52	23.25	30.65	37.97	35.84	28.44	23.28	19.51	16.66	11.92	9.07						
24	0.48	1.15	2.23	3.93	4.34	8.45	12.47	16.44	20.37	24.26	31.98	39.62	38.20	30.31	24.81	20.79	17.75	12.70	9.66						
25	0.50	1.20	2.33	4.09	4.52	8.80	12.99	17.12	21.21	25.27	33.31	41.27	40.61	32.23	26.38	22.11	18.87	13.51	10.27						
26	0.52	1.24	2.42	4.25	4.71	9.15	13.51	17.81	22.06	26.28	34.64	42.92	43.07	34.18	27.98	23.44	20.02	14.32	4.17						
28	0.56	1.34	2.61	4.58	5.07	9.86	14.55	19.18	23.76	28.30	37.31	46.22	48.14	38.20	31.26	26.20	22.37	16.01							
30	0.60	1.43	2.79	4.91	5.43	10.56	15.59	20.55			39.97	49.52	53.38	42.36	34.67		24.81	17.75							
32	0.64	1.53	2.98	5.23	5.79	11.27	16.63	21.92	27.15	32.35	42.64	52.82	58.81	46.67	38.20	32.01	27.33	11.45							
35	0.69	1.67	3.26	5.73	6.33	12.32	18.19		29.70		46.63	57.77	67.27	53.38	43.69	36.62									
40	0.79	1.91	3.72	6.54	7.24	14.08	20.79	27 40	33 94	40 43	53.30	66.03	78.66	65 22	53 38	44.74	29 65								
45	0.79 1.91 3.72 6.54 7.24 14.08 20.79 27.40 33.94 40.43 0.89 2.15 4.19 7.36 8.14 15.84 23.38 30.82 38.18 45.49										59.96				63.70		_0.00								
	0.89 2.15 4.19 7.36 8.14 15.84 23.38 30.82 38.18 45.49 59 TYPE A LUBE TYPE B LUBRICATION											0	300		300	300	TYI	PE C LL	JBRICA	TION					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 80

# of teeth										Revo	lution	s Per I	Vinute	– Sma	II Spr	ocket									
in small sprocket	10	25	50	75	88	100	200	300	400	500	600	700	800	900	1000	1200	1400	1600	1800	2000	2500	3000	3500	4000	4500
11	0.44	1.06	2.07	3.05	3.56	4.03	7.83	11.56	15.23	18.87	22.48	26.07	27.41	22.97	19.61	14.92	11.84	9.69	8.12	6.93	4.96	3.77	3.00	2.45	
12	0.48	1.16	2.26	3.33	3.88	4.39	8.54	12.61	16.62	20.59	24.53	28.44	31.23	26.17	22.35	17.00	13.49	11.04	9.25	7.90	5.65	4.30	3.41	2.79	
13	0.52	1.26	2.45	3.61	4.21	4.76	9.26	13.66	18.00	22.31	26.57	30.81	35.02	29.51	25.20	19.17	15.21	12.45	10.43	8.91	6.37	4.85	3.85	3.15	
14	0.56	1.35	2.63	3.89	4.53	5.12	9.97	14.71	19.39	24.02	28.62	33.18	37.72	32.98	28.16	21.42	17.00	13.91	11.66	9.96	7.12	5.42	4.30	3.52	
15	0.60	1.45	2.82	4.16	4.86	5.49	10.68	15.76	20.77	25.74	30.66	35.55	40.41	36.58	31.23	23.76	18.85	15.43	12.93	11.04	7.90	6.01	4.77		
16	0.64	1.55	3.01	4.44	5.18	5.86	11.39	16.81	22.16	27.45	32.70	37.92	43.11	40.30	34.41	26.17	20.77	17.00	14.25	12.16	8.70	6.62	5.25		
17	0.68	1.64	3.20	4.72	5.50	6.22	12.10	17.86	23.54	29.17	34.75	40.29	45.80	44.13	37.68	28.66	22.75	18.62	15.60	13.32	9.53	7.25			
18	0.72	1.74	3.39	5.00	5.83	6.59	12.81	18.91	24.93	30.88	36.79	42.66	48.49	48.08	41.05	31.23	24.78	20.29	17.00	14.51	10.39	7.90			
19	0.76	1.84	3.57	5.28	6.15	6.95	13.53	19.96	26.31	32.60	38.84	45.03	51.19	52.15	44.52	33.87	26.88	22.00	18.44	15.74	11.26	0.36			
20	0.80	1.93	3.76	5.55	6.47	7.32	14.24	21.01	27.70	34.32	40.88	47.40	53.88	56.32	48.08	36.58	29.03	23.76	19.91	17.00	12.16				
21	0.84	2.03	3.95	5.83	6.80	7.69	14.95	22.07	29.08	36.03	42.92	49.77	56.58	60.59	51.73	39.36	31.23	25.56	21.42	18.29	13.09				
22	0.88	2.13	4.14	6.11	7.12	8.05	15.66	23.12	30.47	37.75	44.97	52.14	59.27	64.97	55.47	42.20	33.49	27.41	22.97	19.61	14.03				
23	0.92	2.22	4.33	6.39	7.45	8.42	16.37	24.17	31.85	39.46	47.01	54.51	61.97	69.38	59.30	45.11	35.80	29.30	24.55	20.97	15.00				
24	0.96	2.32	4.52	6.66	7.77	8.78	17.09	25.22	33.24	41.18	49.06	56.88	64.66	72.40	63.21	48.08	38.16	31.23	26.17	22.35	15.99				
25	1.00	2.42	4.70	6.94	8.09	9.15	17.80	26.27	34.62	42.89	51.10	59.25	67.35	75.42	67.20	51.12	40.57	33.20	27.83	23.76	8.16				
26	1.04	2.51	4.89	7.22	8.42	9.52	18.51	27.32	36.01	44.61	53.14	61.62	70.05	78.43	71.27	54.22	43.02	35.22	29.51	25.20					
28	1.12	2.71	5.27	7.77	9.06	10.25	19.93	29.42	38.78	48.04	57.23	66.36	75.44	84.47	79.65	60.59	48.08	39.36	32.98	28.16					
30	1.20	2.90	5.64	8.33	9.71	10.98	21.36	31.52	41.55	51.47	61.32	71.10	80.82	90.50	88.33	67.20	53.33	43.65	36.58	31.23					
32	1.28	3.09	6.02	8.89	10.36	11.71	22.78	33.62	44.32	54.91	65.41	75.84	86.21	96.53	97.31	74.03	58.75	48.08	40.30	5.65					
35	1.40	3.38	6.58	9.72	11.33	12.81	24.92	36.78	48.47	60.05	71.54	82.95	94.29	105.58	111.31	84.68	67.20	55.00	28.15						
40	1.61	3.87	7.53	11.11	12.95	14.64	28.48	42.03	55.40	68.63	81.76	94.80	107.77	120.67	133.51	103.46	82.10	40.16							*
45	1.81	4.35	8.47	12.49	14.57	16.47	32.04	47.28	62.32	77.21	91.98	106.65	121.24	135.75	150.20	123.45	72.28								^
	TYP	E A LUI	BRICAT	ION			TYP	E B LU	BRICAT	TION								TYPE	C LUBF	RICATIO	N				

Horsepower Ratings - Single Strand Roller Chain No. 80H

# of teeth										Revo	lutions	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	70	100	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2500	3000	3500	4000	4500
11	0.49	1.19	2.31	3.19	4.50	8.75	12.91	17.02	21.08	25.12	29.12	27.41	22.97	19.61	17.00	14.92	11.84	9.69	8.12	6.93	4.96	3.77	3.00	2.45	
12	0.54	1.30	2.52	3.48	4.91	9.54	14.09	18.57	23.00	27.40	31.77	31.23	26.17	22.35	19.37	17.00	13.49	11.04	9.25	7.90	5.65	4.30	3.41	2.79	
13	0.58	1.40	2.73	3.77	5.31	10.34	15.26	20.11		29.68	34.42	35.22	29.51	25.20	21.84	19.17	15.21	12.45	10.43	8.91	6.37	4.85	3.85	3.15	
14	0.63	1.51	2.94	4.06	5.72	11.13	16.43	21.66	26.83	31.97	37.07	39.36	32.98	28.16	24.41	21.42	17.00	13.91	11.66	9.96	7.12	5.42	4.30	2.02	
15	0.67	1.62	3.15	4.35	6.13	11.93	17.61	23.21	28.75	34.25	39.71	43.65	36.58	31.23	27.07	23.76	18.85	15.43	12.93	11.04	7.90	6.01	4.77		
16	0.72	1.73	3.36	4.64	6.54	12.73	18.78	24.75	30.67	36.53	42.36	48.08	40.30	34.41	29.82	26.17	20.77	17.00	14.25	12.16	8.70	6.62			
17	0.76	1.84	3.57	4.94	6.95	13.52	19.95	26.30	32.59	38.82	45.01	51.17	44.13	37.68	32.66	28.66	22.75	18.62	15.60	13.32	9.53	7.25			
18	0.81	1.94	3.78	5.23	7.36	14.32	21.13	27.85	34.50	41.10	47.66	54.17	48.08	41.05	35.59	31.23	24.78	20.29	17.00	14.51	10.39	1.88			
19	0.85	2.05	3.99	5.52	7.77	15.11	22.30	29.40	36.42	43.38	50.30	57.18	52.15	44.52	38.59	33.87	26.88	22.00	18.44	15.74	11.26				
20	0.90	2.16	4.20	5.81	8.18	15.91	23.48	30.94	38.34	45.67	52.95	60.19	56.32	48.08	41.68	36.58	29.03	23.76	19.91	17.00	12.16				
21	0.94	2.27	4.41	6.10	8.59	16.70	24.65	32.49	40.25	47.95	55.60	63.20	60.59	51.73	44.84	39.36	31.23	25.56	21.42	18.29					
22	0.99	2.38	4.62	6.39	8.99	17.50	25.82	34.04	42.17	50.24	58.25	66.21	64.97	55.47	48.08	42.20	33.49	27.41	22.97	19.61					
23	1.03	2.48	4.83	6.68	9.40	18.29	27.00	35.58	44.09	52.52	60.89	69.22	69.45	59.30	51.40	45.11	35.80	29.30	24.55	20.97					
24	1.08	2.59	5.04	6.97	9.81	19.09	28.17	37.13	46.00	54.80	63.54	72.23	74.03	63.21	54.79	48.08	38.16	31.23	26.17	22.35					
25	1.12	2.70	5.25	7.26	10.22	19.88	29.35	38.68	47.92	57.09	66.19	75.24	78.70	67.20	58.25	51.12	40.57	33.20	27.83	23.76					
26	1.17	2.81	5.46	7.55	10.63	20.68	30.52	40.23	49.84	59.37	68.84	78.25	83.47	71.27	61.78	54.22	43.02	35.22	29.51	25.20					
28	1.26	3.03	5.88	8.13	11.45	22.27	32.87	43.32	53.67	63.94	74.13	84.27	93.29	79.65	69.04	60.59	48.08	39.36	32.98	28.16					
30	1.34	3.24	6.31	8.71	12.27	23.86	35.21	46.41	57.50	68.50	79.43	90.29	101.10	88.33	76.57	67.20	53.33	43.65	36.58	12.26					
32	1.43	3.46	6.73	9.29	13.08	25.45	37.56	49.51	61.34	73.07	84.72	96.31	107.84	97.31	84.35	74.03	58.75	48.08	39.43						
35	1.57	3.78	7.36	10.16	14.31	27.84	41.08	54.15	67.09	79.92	92.67	105.34	117.95	111.31	96.49	84.68	67.20	55.00	5.58						
40	1.79	4.32	8.41	11.61	16.35	31.81	46.95	61.89	76.67	91.34	105.90	120.39	134.80	136.00	117.88	103.46	82.10	14.36							ملد
45	2.02	4.86	9.46	13.06	18.40	35.79	52.82	69.62	86.25	102.75	119.14	135.44	151.65	162.28	140.66	123.45	43.25								*
	TYP	E A LU	BE		7	ГҮРЕ В	LUBRI	CATION	1								TYPE (LUBR	ICATIO	N					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 100

# of teeth										Revo	lution	s Per I	Vinute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	71	100	150	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2500	3000	3500	4000
11	0.85	2.04	3.96	5.55	7.71	11.38	15.00	22.14	29.18	36.15	43.06	40.03	32.77	27.46	23.45	20.32	17.84	14.15	11.58	9.71	8.29	5.93	4.51	3.58	
12	0.92	2.22	4.32	6.05	8.41	12.41	16.36	24.15	31.83	39.44	46.98	45.61	37.33	31.29	26.71	23.16	20.32	16.13	13.20	11.06	9.45	6.76	5.14		
13	1.00	2.41	4.68	6.56	9.11	13.45	17.73	26.16	34.48	42.72	50.89	51.43	42.10	35.28	30.12	26.11	22.92	18.18	14.88	12.47	10.65	7.62	5.80		
14	1.08	2.59	5.04	7.06	9.81	14.48	19.09	28.18	37.14	46.01	54.81	57.48	47.05	39.43	33.66	29.18	25.61	20.32	16.63	13.94	11.90	8.52	1.13		
15	1.15	2.78	5.41	7.57	10.51	15.52	20.45	30.19	39.79	49.30	58.72	63.75	52.18	43.73	37.33	32.36	28.40	22.54	18.45	15.46	13.20	9.45			
16	1.23	2.96	5.77	8.07	11.22	16.55	21.82	32.20	42.44	52.58	62.64	70.23	57.48	48.17	41.13	35.65	31.29	24.83	20.32	17.03	14.54	10.41			
17	1.31	3.15	6.13	8.58	11.92	17.59	23.18	34.21	45.10	55.87	66.55	76.91	62.95	52.76	45.05	39.04	34.27	27.19	22.26	18.65	15.93	11.40			
18	1.38	3.33	6.49	9.08	12.62	18.62	24.55	36.23	47.75	59.15	70.47	81.71	68.59	57.48	49.08	42.54	37.33	29.63	24.25	20.32	17.35	0.18			
19	1.46	3.52	6.85	9.59	13.32	19.66	25.91	38.24	50.40	62.44	74.38	86.25	74.38	62.34	53.22	46.13	40.49	32.13	26.30	22.04	18.82				
20	1.54	3.70	7.21	10.09	14.02	20.69	27.27	40.25	53.05	65.73	78.30	90.79	80.33	67.32	57.48	49.82	43.73	34.70	28.40	23.80	20.32				
21	1.61	3.89	7.57	10.60	14.72	21.73	28.64	42.26	55.71	69.01	82.21	95.33	86.43	72.43	61.85	53.61	47.05	37.33	30.56	25.61	21.87				
22	1.69	4.08	7.93	11.10	15.42	22.76	30.00	44.28	58.36	72.30	86.13	99.87	92.68	77.67	66.31	57.48	50.45	40.03	32.77	27.46	23.45				
23	1.77	4.26	8.29	11.60	16.12	23.79	31.36	46.29	61.01	75.59	90.04	104.41	99.07	83.02	70.89	61.44	53.93	42.79	35.03	29.35	25.06				
24	1.84	4.45	8.65	12.11	16.82	24.83	32.73	48.30	63.66	78.87			105.60		75.56	65.49	57.48	45.61	37.33	31.29	5.43				
25	1.92	4.63	9.01	12.61	17.52	25.86	34.09	50.31	66.32	82.16	97.87	113.48	112.27	94.09	80.33	69.63	61.11	48.49	39.69	33.26					
26	2.00	4.82	9.37	13.12	18.23	26.90	35.45	52.33	68.97	85.45	101.79	118.02	119.07	99.79	85.20	73.85	64.81	51.43	42.10	35.28					
28	2.15	5 19	10.09	14.13	19.63	28.97	38.18	56.35	74.27	92.02	109 62	127 10	133.07	111 52	95 22	82.53	72.43	57.48	47.05						
30	2.31	5.56	10.03	15.14	21.03	31.04	40.91	60.38	79.58						105.60		80.33	63.75	49.40						
32	2.46	5.93	11.53	16.15	22.43	33.11	43.64	64.40							116.33			70.23	8.82						
35	2.69	6.48	12.61	17.66	24.53	36.21	47.73	70.44		115.02															
40	3.07	7.41	14.41	20.10	28.04	41 20	54.54	00 E0	106 11	101 /5	156.60	101 50	206.41	100.40	160 50	140.00	100.60								
40 45	3.46	8.34	14.41 16.22	20.18	31.54	41.38	61.36			131.45 147.89															*
10			-	22.71						177.00	170.17	207.21	LUL.L I	LL1.L1	107.00				10.4715						
	TYP	E A LU	RE		1	YPE B	LUBRI	CATION	ı								TYPE (J LUBR	IICATIO	N					

Horsepower Ratings - Single Strand Roller Chain No. 100H

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	58	100	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2700	3000	3500
11	0.93	2.23	4.34	5.01	8.45	16.43	24.25	31.96	39.60	47.18	40.03	32.77	27.46	23.45	20.32	17.84	14.15	11.58	9.71	8.29	7.19	6.31	5.28	4.51	
12	1.01	2.44	4.74	5.46	9.21	17.93	26.46	34.87	43.20	51.46	45.61	37.33	31.29	26.71	23.16	20.32	16.13	13.20	11.06	9.45	8.19	7.19	6.02	5.14	
13	1.09	2.64	5.13	5.92	9.98	19.42	28.66	37.78	46.80	55.75	51.43	42.10	35.28	30.12	26.11	22.92	18.18	14.88	12.47	10.65	9.23	8.10	6.79	5.80	
14	1.18	2.84	5.53	6.37	10.75	20.91	30.86	40.68	50.40	60.04	57.48	47.05	39.43	33.66	29.18	25.61	20.32	16.63	13.94	11.90	10.32	9.05	7.59		
15	1.26	3.04	5.92	6.83	11.52	22.41	33.07	43.59	54.00	64.33	63.75	52.18	43.73	37.33	32.36	28.40	22.54	18.45	15.46	13.20	11.44	10.04	8.42		
16	1.35	3.25	6.32	7.28	12.29	23.90	35.27	46.49	57.60	68.62	70.23	57.48	48.17	41.13	35.65	31.29	24.83	20.32	17.03	14.54	12.60	11.06			
17	1.43	3.45	6.71	7.74	13.05	25.39	37.48	49.40	61.20	72.91	76.91	62.95	52.76	45.05	39.04	34.27	27.19	22.26	18.65	15.93	13.80	12.12			
18	1.52	3.65	7.11	8.19	13.82	26.89	39.68	52.31	64.80	77.20	83.80	68.59	57.48	49.08	42.54	37.33	29.63	24.25	20.32	17.35	15.04	2.94			
19	1.60	3.86	7.50	8.65	14.59	28.38	41.89	55.21	68.40	81.48	90.88	74.38	62.34	53.22	46.13	40.49	32.13	26.30	22.04	18.82	16.31				
20	1.68	4.06	7.89	9.10	15.36	29.88	44.09	58.12	72.00	85.77	98.15	80.33	67.32	57.48	49.82	43.73	34.70	28.40	23.80	20.32	7.77				
21	1.77	4.26	8.29	9.56	16.13	31.37	46.30	61.02	75.60	90.06	104.43	86.43	72.43	61.85	53.61	47.05	37.33	30.56	25.61	21.87					
22	1.85	4.46	8.68	10.01	16.89	32.86	48.50	63.93	79.20	94.35	109.40	92.68	77.67	66.31	57.48	50.45	40.03	32.77	27.46	21.67					
23	1.94	4.67	9.08	10.47	17.66	34.36	50.71	66.83	82.80	98.64	114.37	99.07	83.02	70.89	61.44	53.93	42.79	35.03	29.35	2.94					
24	2.02	4.87	9.47	10.92	18.43	35.85	52.91	69.74	86.40	102.93	119.34	105.60	88.50	75.56	65.49	57.48	45.61	37.33	31.29						
25	2.10	5.07	9.87	11.38	19.20	37.34	55.12	72.65	90.00	107.22	124.32	112.27	94.09	80.33	69.63	61.11	48.49	39.69	29.68						
26	2.19	5.28	10.26	11.83	19.97	38.84	57.32	75.55	93.60	111.51	129.29	119.07	99.79	85.20	73.85	64.81	51.43	42.10	11.58						
28	2.36	5.68	11.05	12.75	21.50	41.83	61.73	81.36	100.80	120.08	139.24	133.07	111.52	95.22	82.53	72.43	57.48	47.05							
30	2.53	6.09	11.84	13.66	23.04	44.81	66.14	87.18	108.00	128.66	149.18	147.58	123.68	105.60	91.53	80.33	63.75	19.16							
32	2.69	6.49	12.63	14.57	24.57	47.80	70.55	92.99	115.20	137.24	159.13	162.58	136.25	116.33	100.84	88.50	70.23								
35	2.95	7.10	13.82	15.93	26.88	52.28	77.16	101.71	126.00	150.10	174.04	185.97	155.85	133.07	115.34	101.23	33.74								
40	3.37	8.12	15.79	18.21	30.72	59.75	88.18	116.23	144.00	171.55	198.91	226.11	190.42	162.58	140.92	82.37									*
45	3.79	9.13	17.76	20.48	34.55	67.22	99.21	130.76	162.00	192.99	223.77	254.38	227.21	194.00	85.51										^
	TYP	E A LU	BE		TYP	E B LU	BRICAT	ΓΙΟΝ								TY	PE C LI	JBRICA	TION						

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 120

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket									
in small sprocket	10	25	50	60	75	100	150	200	300	400	500	600	700	800	900	1000	1200	1400	1600	1800	2000	2200	2400	2700	3000
11	1.43	3.44	6.69	7.97	9.88	13.02	19.22	25.33	37.38	49.27	61.04	58.37	46.32	37.91	31.77	27.13	20.64	16.38	13.40	11.23	9.59	8.31	7.30	6.11	
12	1.56	3.75	7.30	8.70	10.78	14.20	20.96	27.63	40.78	53.75	66.59	66.51	52.78	43.20	36.20	30.91	23.51	18.66	15.27	12.80	10.93	9.47	8.31	6.97	
13	1.69	4.07	7.91	9.42	11.67	15.39	22.71	29.93	44.18	58.23	72.14	74.99	59.51	48.71	40.82	34.85	26.51	21.04	17.22	14.43	12.32	10.68	9.37		
14	1.82	4.38	8.52	10.15	12.57	16.57	24.46	32.24	47.58	62.71	77.69	83.81	66.51	54.44	45.62	38.95	29.63	23.51	19.25	16.13	13.77	11.94	10.48		
15	1.95	4.69	9.13	10.87	13.47	17.76	26.20	34.54	50.98	67.19	83.24	92.95	73.76	60.37	50.59	43.20	32.86	26.08	21.34	17.89	15.27	13.24			
16	2.08	5.00	9.74	11.60	14.37	18.94	27.95	36.84	54.37	71.67	88.79	102.39	81.26	66.51	55.74	47.59	36.20	28.73	23.51	19.71	16.83	14.58			
17	2.21	5.32	10.34	12.32	15.27	20.12	29.70	39.14	57.77	76.15	94.34	112.14	88.99	72.84	61.04	52.12	39.65	31.46	25.75	21.58	18.43				
18	2.34	5.63	10.95	13.05	16.16	21.31	31.45	41.45	61.17	80.63	99.89	119.00	96.96	79.36	66.51	56.78	43.20	34.28	28.06	23.51	20.08				
19	2.47	5.94	11.56	13.77	17.06	22.49	33.19	43.75	64.57	85.11	105.44	125.61	105.15	86.06	72.13	61.58	46.85	37.18	30.43	25.50	0.80				
20	2.60	6.26	12.17	14.50	17.96	23.67	34.94		67.97	89.59		132.22			77.89	66.51	50.59	40.15	32.86	27.54					
21	2.73	6.57	12.78	15.22	18.86	24.86	36.69	48.36	71.37	94.07	116.54	138.83	122.18	100.00	83.81	71.56	54.44	43.20	35.36	27.46					
22	2.86	6.88	13.39	15.95	19.76	26.04	38.43	50.66	74.76	98.55	122.09	145.44	131.01	107.23	89.87	76.73	58.37	46.32	37.91						
23	2.99	7.19	14.00	16.67	20.65	27.22	40.18	52.96	78.16	103.02	127.64	152.05	140.04	114.62	96.06	82.02	62.39	49.51	40.53						
24	3.11	7.51	14.60	17.40	21.55	28.41	41.93	55.26					1	122.18			66.51	52.78	43.20						
25	3.24	7.82	15.21	18.12	22.45	29.59	43.67	57.57						129.90			70.71	56.11	18.37						
26	3.37	8.13	15.82	18.85	23.35	30.78	45.42	59.87	88.36	116.46	144.29	171.88	168.32	137.77	115.46	98.58	74.99	59.51							
28	3.63	8.76	17.04	20.30	25.15	33.14	48.92	64.47	05 15	105 /10	155 38	185 11	188 11	153 07	120.03	110.17	83.81	66.51							
30	3.89	9.38	18.25	21.75	26.94	35.51	52.41	•	101.95							122.18		13.70							
32	4.15	10.01	19.47	23.20	28.74	37.88	55.90									134.60		10.70							
35	4.54	10.95	21.30	25.37	31.43	41.43	61.14									153.97									
							60.00																		
40	5.19	12.51 14.08	24.34 27.38	28.99 32.62	35.92 40.41	47.35 53.27	69.88 78.61	92.11						262.89											*
45	5.84			32.02	40.41					201.0/	249.72	297.49	344.94	313.09	213.33	49.79									
	TYP	E A LU	BE			TYF	PE B LU	BRICAT	ION								TYI	PE C LI	JBRICA	TION					

Horsepower Ratings - Single Strand Roller Chain No. 120H

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket									
in small sprocket	5	10	25	50	75	100	150	200	300	400	500	600	700	800	900	1000	1200	1400	1600	1800	2000	2200	2400	2700	3000
11	0.79	1.54	3.72	7.23	10.67	14.06	20.76	27.36	40.38	53.22	65.93	58.37	46.32	37.91	31.77	27.13	20.64	16.38	13.40	11.23	9.59	8.31	7.30	6.11	
12	0.86	1.68	4.05	7.89	11.64	15.34	22.64	29.85	44.05	58.06	71.93	66.51	52.78	43.20	36.20	30.91	23.51	18.66	15.27	12.80	10.93	9.47	8.31	1.06	
13	0.94	1.82	4.39	8.54	12.61	16.62	24.53	32.33	47.72	62.90	77.92	74.99	59.51	48.71	40.82	34.85	26.51	21.04	17.22	14.43	12.32	10.68	9.37		
14	1.01	1.96	4.73	9.20	13.58	17.90	26.42	34.82	51.39	67.73	83.92	83.81	66.51	54.44	45.62	38.95	29.63	23.51	19.25	16.13	13.77	11.94	4.55		
15	1.08	2.10	5.07	9.86	14.55	19.18	28.30	37.31	55.06	72.57	89.91	92.95	73.76	60.37	50.59	43.20	32.86	26.08	21.34	17.89	15.27	13.24			
16	1.15	2.24	5.41	10.52	15.52	20.46	30.19	39.79	58.73	77.41	95.90	102.39	81.26	66.51	55.74	47.59	36.20	28.73	23.51	19.71	16.83				
17	1.23	2.38	5.74	11.17	16.49	21.73	32.08	42.28	62.40	82.25	101.90	112.14	88.99	72.84	61.04	52.12	39.65	31.46	25.75	21.58	18.43				
18	1.30	2.52	6.08	11.83	17.46	23.01	33.96	44.77	66.07	87.09	107.89	122.18	96.96	79.36	66.51	56.78	43.20	34.28	28.06	23.51	4.23				
19	1.37	2.66	6.42	12.49	18.43	24.29	35.85	47.26	69.74	91.93	113.89	132.50	105.15	86.06	72.13	61.58	46.85	37.18	30.43	25.50					
20	1.44	2.80	6.76	13.14	19.40	25.57	37.74	49.74	73.41	96.76	119.88				77.89	66.51	50.59	40.15	32.86	24.58					
21	1.51	2.94	7.09	13.80	20.37	26.85	39.63	52.23	77.08	101.60	125.87	149.95	122.18	100.00	83.81	71.56	54.44	43.20	35.36						
22	1.59	3.08	7.43	14.46	21.34	28.13	41.51	54.72	80.75	106.44	131.87	157.09	131.01	107.23	89.87	76.73	58.37	46.32	37.91						
23	1.66	3.22	7.77	15.12	22.31	29.41	43.40	57.20	84 42	111 28	137.86	164 23	140 04	114 62	96.06	82.02	62.39	49.51	38.38						
24	1.73	3.36	8.11	15.77	23.28	30.68	45.29	59.69			143.86					87.43	66.51	52.78	12.24						
25	1.80	3.50	8.45	16.43	24.25	31.96	47.17	62.18			149.85						70.71	56.11							
26	1.87	3.64	8.78	17.09	25.22	33.24	49.06	64.66	95.44	125.79	155.84	185.65	168.32	137.77	115.46	98.58	74.99	59.51							
28	2.02	3.93	9.46	18.40	27.16	35.80	52.83	69.64	100 70	105 47	167.83	100.04	100 11	152.07	100.00	110 17	02 01	30.35							
30	2.02	3.93 4.21	10.14	19.72	29.10	38.36	56.61				179.82							30.33							
32	2.10	4.49	10.14	21.03	31.04	40.91	60.38				191.81														
35	2.52	4.43	11.82	23.00	33.95	44.75	66.04				209.79														
			-														12.07								
40	2.88	5.61	13.51	26.29	38.80	51.14	75.48				239.76					118.61									*
45	3.24	6.31	15.20	29.58	43.65	57.53				217.72	269.73	321.32	3/2.5/	2/8.98	148.03										
	TYP	E A LU	BE			TYPE B	LUBRI	CATION	١								TYPE	C LUBF	RICATIO	N					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 140

# of teeth										Revo	lution	s Per I	Vinute	– Sma	all Spr	ocket									
in small sprocket	5	10	25	50	53	75	100	150	200	300	400	500	600	700	800	900	1000	1200	1400	1600	1800	2000	2200	2400	2700
11	1.14	2.21	5.32	10.36	10.95	15.28	20.15	29.73	39.19	57.84	76.24	86.80	66.03	52.40	42.89	35.94	30.69	23.35	18.53	15.16	12.71	10.85	9.40	8.25	
12	1.24	2.41	5.81	11.30	11.95	16.67	21.98	32.44	42.75	63.10	83.17	98.90	75.24	59.70	48.87	40.95	34.97	26.60	21.11	17.28	14.48	12.36	10.72	0.72	
13	1.34	2.61	6.29	12.24	12.94	18.06	23.81	35.14	46.32	68.36		111.52		67.32	55.10	46.18	39.43	29.99	23.80		16.33	13.94	12.08		
14	1.45	2.81	6.78	13.18	13.94	19.45	25.64	37.84	49.88	73.61	97.03	120.21	94.81	75.24	61.58	51.61	44.06	33.52	26.60	21.77	18.25	15.58			
15	1.55	3.01	7.26	14.12	14.93	20.84	27.47	40.54	53.44	78.87			105.15		68.29	57.23	48.87	37.17	29.50		20.24	17.28			
16	1.65	3.21	7.74	15.06	15.93	22.23	29.30	43.25	57.00	84.13			115.83		75.24	63.05	53.83	40.95	32.50	26.60	22.29				
17	1.75	3.41	8.23	16.00	16.93	23.62	31.13	45.95	60.57	89.39			126.86			69.05	58.96	44.85	35.59	29.13	24.41				
18	1.86	3.61	8.71	16.95	17.92	25.01	32.97	48.65	64.13	94.65	124./5	154.55	138.22	109.68	89.77	75.24	64.24	48.87	38.78	31.74					
19	1.96	3.82	9.20	17.89	18.92	26.40	34.80	51.36	67.69	99.90	131.68	163.14	149.89	118.95	97.36	81.59	69.66	53.00	42.06	34.42					
20	2.06	4.02	9.68	18.83	19.91	27.79	36.63	54.06		105.16			161.88				75.24	57.23	45.42	35.82					
21	2.17	4.22	10.16	19.77	20.91	29.18	38.46	56.76		110.42			1				80.95	61.58	48.87						
22	2.27	4.42	10.65	20.71	21.90	30.57	40.29	59.47	78.38	115.68	152.47	188.90	186.76	148.21	121.30	101.66	86.80	66.03	52.40						
23	2.37	4.62	11.13	21.65	22.90	31.96	42.12	62.17		120.94			199.64					70.58	56.01						
24	2.48	4.82	11.62	22.60	23.90	33.35	43.95	64.87		126.20			212.80					75.24	37.90						
25	2.58	5.02	12.10	23.54	24.89	34.74	45.79	67.57									105.15								
26	2.68	5.22	12.58	24.48	25.89	36.13	47.62	70.28	92.63	136.71	180.20	223.24	239.95	190.41	155.85	130.61	111.52	84.83							
28	2.89	5.62	13.55	26.36	27.88	38.91	51.28	75.68									124.63								
30	3.10	6.02	14.52	28.24	29.87	41.68	54.94										138.22	18.64							
32	3.30	6.43	15.49	30.13	31.86	44.46	58.61			168.26															
35	3.61	7.03	16.94	32.95	34.85	48.63	64.10	94.60	124./0	184.03	242.57	300.52	358.00	297.40	243.41	203.99	135.27								
40	4.13	8.03	19.36	37.66	39.83	55.58	73.26	108.12	142.51	210.33	277.22	343.45	409.15	363.35	297.40	153.78									*
45	4.65	9.04	21.78	42.37	44.80	62.53	82.42	121.63	160.32	236.62	311.88	386.38	460.29	433.56	221.34										^
	TYPE	E A LUI	BRICAT	ION		-	TYPE B	LUBRI	CATION	١							TY	PE C LI	JBRICA	TION					

Horsepower Ratings - Single Strand Roller Chain No. 140H

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	5	10	25	44	50	75	100	150	200	300	400	500	600	700	800	900	1000	1200	1400	1600	1800	2000	2200	2400	2700
11	1.21	2.36	5.69	9.79	11.07	16.34	21.54	31.79	41.90	61.84	81.50	86.80	66.03	52.40	42.89	35.94	30.69	23.35	18.53	15.16	12.71	10.85	9.40	8.25	
12	1.32	2.58	6.21	10.68	12.08	17.83	23.50	34.68	45.71	67.46	88.91	98.90	75.24	59.70	48.87	40.95	34.97	26.60	21.11	17.28	14.48	12.36	10.72		
13	1.43	2.79	6.73	11.57	13.08	19.31	25.45	37.57	49.52	73.08	96.32	111.52		67.32	55.10	46.18	39.43	29.99	23.80	19.48	16.33	13.94			
14	1.55	3.01	7.24	12.46	14.09	20.80	27.41	40.46	53.32	78.70	103.73	124.63	94.81	75.24	61.58	51.61	44.06	33.52	26.60	21.77	18.25	15.58			
15	1.66	3.22	7.76	13.35	15.10	22.28	29.37	43.35	57.13	84.32	111.14	137.69	105.15	83.44	68.29	57.23	48.87	37.17	29.50	24.15	20.24				
16	1.77	3.44	8.28	14.24	16.10	23.77	31.33	46.24	60.94	89.94	118.55	146.87	115.83	91.92	75.24	63.05	53.83	40.95	32.50	26.60	22.29				
17	1.88	3.65	8.80	15.13	17.11	25.25	33.29	49.13	64.75	95.56	125.96	156.05	126.86	100.67	82.40	69.05	58.96	44.85	35.59	29.13					
18	1.99	3.86	9.31	16.02	18.12	26.74	35.24	52.02	68.56	101.19	133.37	165.23	138.22	109.68	89.77	75.24	64.24	48.87	38.78	31.74					
19	2.10	4.08	9.83	16.92	19.12	28.22	37.20	54.90	72.37	106.81	140.78	174.41	149.89	118.95	97.36	81.59	69.66	53.00	42.06	33.55					
20	2.21	4.29	10.35	17.81	20.13	29.71	39.16	57.79	76.18	112.43	148.19	183.59	161.88	128.46	105.15	88.12	75.24	57.23	45.42						
21	2.32	4.51	10.87	18.70	21.14	31.20	41.12	60.68	79.99	118.05	155.60	192.77	174.17	138.22	113.13	94.81	80.95	61.58	48.87						
22	2.43	4.72	11.38	19.59	22.14	32.68	43.08	63.57	83.80	123.67	163.01	201.95	186.76	148.21	121.30	101.66	86.80	66.03	52.40						
23	2.54	4.94	11.90	20.48	23.15	34.17	45.03	66.46	87.60	129.29	170.42	211.13	199.64	158.43	129.67	108.67	92.78	70.58	29.48						
24	2.65	5.15	12.42	21.37	24.16	35.65	46.99	69.35	91.41	134.91	177.83	220.31	212.80	168.87	138.22	115.83	98.90	75.24							
25	2.76	5.37	12.94	22.26	25.16	37.14	48.95	72.24	95.22	140.54	185.24	229.49	226.24	179.53	146.94	123.15	105.15	79.99							
26	2.87	5.58	13.45	23.15	26.17	38.62	50.91	75.13	99.03	146.16	192.65	238.67	239.95	190.41	155.85	130.61	111.52	84.83							
28	3.09	6.01	14.49	24.93	28.18	41.59	54.82	80.91	106 65	157 40	207.47	257 03	268 16	212 80	174 17	145 97	124 63	41.32							
30	3.31	6.44	15.52	26.71	30.20	44.56	58.74				222.28							11.02							
32	3.53	6.87	16.56	28.49	32.21	47.54	62.66	92.47	121.88	179.89	237.10	293.74	327.63	259.99	212.80	178.34	152.27								
35	3.86	7.51	18.11	31.16	35.23	51.99	68.53	101.14	133.31	196.75	259.33	321.28	374.76	297.40	243.41	203.99	66.13								
40	4.41	8.59	20.70	35.61	40.26	59.42	78.32	115 50	152 36	224 86	296.38	367 18	437 42	363.35	264 26	74 76									
45	4.97	9.66	23.28	40.06	45.29	66.85		130.04								7 1.70									*
	TYP	E A LU	BE		•	TYPE B		ICATION									TYPE	C LUBF	RICATIO	N					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 160

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spr	ocket									
in small sprocket	5	10	25	47	50	75	100	150	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2200	2400
11	1.65	3.20	7.72	14.16	15.02	22.17	29.23	43.14	56.86	83.91	110.60	96.58	73.47	58.31	47.72	39.99	34.15	29.60	25.98	20.61	16.87	14.14	12.07	10.46	
12	1.80	3.50	8.43	15.45	16.39	24.19	31.88	47.06	62.03	91.54	120.66	110.05	83.72	66.44	54.38	45.57	38.91	33.73	29.60	23.49	19.22	16.11	13.76		
13	1.95	3.79	9.13	16.73	17.76	26.21	34.54	50.98	67.19	99.17	130.71	124.09	94.40	74.91	61.31	51.38	43.87	38.03	33.37	26.48	21.68	18.17			
14	2.10	4.08	9.83	18.02	19.12	28.22	37.20	54.90	72.36	106.80	140.77	138.68	105.50	83.72	68.52	57.43	49.03	42.50	37.30	29.60	24.23	20.30			
15	2.25	4.37	10.53	19.31	20.49	30.24	39.86	58.82	77.53	114.43	150.82	153.80	117.00	92.85	75.99	63.69	54.38	47.13	41.37	32.83	26.87				
16	2.40	4.66	11.23	20.59	21.85	32.25	42.51	62.74	82.70	122.05	160.88	169.43	128.89	102.28	83.72	70.16	59.90	51.92	45.57	36.16	29.60				
17	2.55	4.95	11.94	21.88	23.22	34.27	45.17	66.66	87.87	129.68	170.93	185.56	141.16	112.02	91.69	76.84	65.61	56.87	49.91	39.61	24.21				
18	2.70	5.24	12.64	23.17	24.59	36.29	47.83	70.59	93.04	137.31	180.99	202.17	153.80	122.05	99.90	83.72	71.48	61.96	54.38	43.15					
19	2.85	5.54	13.34	24.45	25.95	38.30	50.48	74.51	98.21	144.94	191.04	219.25	166.79	132.36	108.33	90.79	77.52	67.19	58.97	46.80					
20	3.00	5.83	14.04	25.74	27.32	40.32	53.14			152.57							83.72	72.57	63.69	46.79					
21	3.15	6.12	14.74	27.03	28.68	42.33	55.80									105.50	90.07	78.08	68.52						
22	3.29	6.41	15.45	28.32	30.05	44.35	58.45	86.27	113.71	167.83	221.21	273.18	207.82	164.91	134.98	113.12	96.58	83.72	73.47						
23	3.44	6.70	16.15	29.60	31.42	46 36	61 11	90 19	118 88	175 45	231 26	286 51	222 15	176 29	144 29	120.92	103 24	89.49	78.54						
24	3.59	6.99	16.85	30.89	32.78	48.38	63.77									128.89		95.39	83.72						
25	3.74	7.28	17.55	32.18	34.15	50.40	66.43									137.03		101.41	32.66						
26	3.89	7.57	18.26	33.46	35.51	52.41	69.08					-				145.33									
28	4.19	8.16	19.66	36.04	38.24	56.44	74.40	100 80	1// 73	213.60	281 54	3/18 70	208 30	236 70	102.81	162.42	138 68	36.88							
30	4.49	8.74	21.06	38.61	40.98	60.48										180.13		50.00							
32	4.79	9.32	22.47	41.19	43.71	64.51	85.03									198.44									
35	5.24	10.20	24.57	45.05	47.81	70.55				266.99							22.00								
			-																						
40 45	5.99 6.74	11.65 13.11	28.09 31.60	51.48 57.92	54.63 61.46		106.28 119.57								160.63										*
40				57.92						343.28	402.47	00.00	007.95	209.10			T) (DE		10.4715						
	TYP	E A LU	BE		7	YPE B	LUBRI	CATION	1								TYPE (CLUBR	IICATIO	N					

Horsepower Ratings - Single Strand Roller Chain No. 160H

# of teeth										Revo	lution	s Per I	Minute	– Sma	II Spr	ocket									
in small sprocket	2	5	10	25	40	50	75	100	150	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	2200
11	0.73	1.75	3.40	8.19	12.86	15.94	23.52	31.00	45.75	60.31	89.00	117.32	96.58	73.47	58.31	47.72	39.99	34.15	29.60	25.98	20.61	16.87	14.14	12.07	
12	0.79	1.91	3.71	8.94	14.03	17.39	25.66	33.82	49.91	65.79	97.10	127.98	110.05	83.72	66.44	54.38	45.57	38.91	33.73	29.60	23.49	19.22	16.11	12.02	
13	0.86	2.07	4.02	9.68	15.20	18.83	27.80	36.64	54.07	71.27	105.19	138.65	124.09	94.40	74.91	61.31	51.38	43.87	38.03	33.37	26.48	21.68	18.17		
14	0.92	2.22	4.33	10.43	16.37	20.28	29.93	39.46	58.23	76.75	113.28	149.31	138.68	105.50	83.72	68.52	57.43	49.03	42.50	37.30	29.60	24.23	8.08		
15	0.99	2.38	4.64	11.17	17.54	21.73	32.07	42.27	62.39	82.24	121.37	159.98	153.80	117.00	92.85	75.99	63.69	54.38	47.13	41.37	32.83	26.87			
16	1.05	2.54	4.94	11.92	18.71	23.18	34.21	45.09	66.55	87.72	129.46	170.64	169.43	128.89	102.28	83.72	70.16	59.90	51.92	45.57	36.16	29.60			
17	1.12	2.70	5.25	12.66	19.88	24.63	36.35	47.91	70.71	93.20	137.55	181.31	185.56	141.16	112.02	91.69	76.84	65.61	56.87	49.91	39.61				
18	1.19	2.86	5.56	13.41	21.05	26.08	38.49	50.73	74.87	98.68	145.64	191.97	202.17	153.80	122.05	99.90	83.72	71.48	61.96	54.38	43.15				
19	1.25	3.02	5.87	14.15	22.22	27.53	40.63	53.55	79 03	104 17	153.74	202 64	219 25	166 79	132 36	108 33	90 79	77.52	67.19	58.97	43.82				
20	1.32	3.18	6.18	14.89	23.39	28.98	42.76	56.37			161.83							83.72	72.57	63.69					
21	1.38	3.34	6.49	15.64	24.56	30.42	44.90	59.18	87.35	115.13	169.92	223.97	254.77	193.81	153.80	125.88	105.50	90.07	78.08	68.52					
22	1.45	3.49	6.80	16.38	25.73	31.87	47.04	62.00	91.51	120.61	178.01	234.63	273.18	207.82	164.91	134.98	113.12	96.58	83.72	73.47					
23	1.52	3.65	7.11	17.13	26.90	33.32	49.18	64.82	95 67	126 10	186.10	245 30	292 02	222 15	176 20	144 20	120 92	103 24	80 40	68.24					
24	1.58	3.81	7.42	17.10	28.07	34.77	51.32	67.64			194.19									21.76					
25	1.65	3.97	7.73	18.62	29.23	36.22	53.45				202.28		1							210					
26	1.71	4.13	8.03	19.36	30.40	37.67	55.59				210.37		J												
	4.05	4.45	0.05	00.05		40.57	FO 07	70.04	110.40	150.51	000 50	000.00	000.00	000.00	000 70	100.01	100.40	105 17							
28	1.85	4.45	8.65	20.85	32.74	40.57	59.87				226.56														
30 32	1.98 2.11	4.77 5.08	9.27 9.89	23.83	35.08 37.42	43.46 46.36	64.15 68.42				242.74 258.92							49.00							
35	2.11	5.56	10.82	26.07	40.93	50.71	74.84				283.20														
																	22.00								
40	2.64	6.35	12.36	29.79	46.78	57.95					323.65					57.42									*
45	2.97	7.15	13.91	33.51	52.62	65.19	96.22	126.82	187.17	246.71	364.11	479.93	594.58	495.96	173.00										**
	TYPE	E A LUI	BRICAT	ION		-	TYPE B	LUBRI	CATION	N							TY	PE C LU	JBRICA	TION					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 180

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spro	ocket									
in small sprocket	2	5	10	25	43	50	75	100	150	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	4500
11	0.94	2.27	4.43	10.66	17.95	20.75	30.62	40.36	59.56	78.51	115.87	148.32	106.13	80.73	64.07	52.44	43.95	37.52	32.52	28.54	22.65	18.54	15.54		
12	1.03	2.48	4.83	11.63	19.58	22.63	33.40	44.03	64.98	85.64			120.92		73.00	59.75	50.07	42.75	37.06	32.52		21.12	17.70		
13	1.12	2.69	5.23	12.60	21.21	24.52	36.19	47.70	70.39	92.78			136.35			67.37	56.46	48.21	41.79	36.67	29.10	23.82			
14	1.20	2.90	5.63	13.57	22.84	26.40	38.97	51.36	75.81	99.92	147.47	194.37	152.38	115.92	91.99	75.29	63.10	53.87	46.70	40.98	32.52	26.62			
15	1.29	3.10	6.03	14.54	24.48	28.29	41.75	55.03	81.22	107.06	158.00	208.26	169.00	128.56	102.02	83.50	69.98	59.75	51.79	45.45	36.07				
16	1.37	3.31	6.44	15.51	26.11	30.18	44.54	58.70					186.17				77.09	65.82	57.05	50.07	39.74				
17	1.46	3.52	6.84	16.48	27.74	32.06	47.32	62.37					203.90					72.09	62.49	54.84	43.52				
18	1.54	3.72	7.24	17.45	29.37	33.95	50.10	66.04	97.47	128.47	189.60	249.91	222.15	169.00	134.11	109.77	91.99	78.54	68.08	59.75					
19	1.63	3.93	7.64	18.42	31.00	35.83	52.89	69.71	102.88	135.60	200.13	263.79	240.92	183.27	145.44	119.04	99.76	85.18	73.83	64.80					
20	1.72	4.14	8.05	19.39	32.64	37.72	55.67	73.38	108.30	142.74	210.67	277.68	260.19	197.93	157.07	128.56	107.74	91.99	79.74	69.98					
21	1.80	4.34	8.45	20.36	34.27	39.61	58.45			149.88									85.79	75.29					
22	1.89	4.55	8.85	21.33	35.90	41.49	61.24	80.71	119.12	157.02	231.73	305.44	300.17	228.35	181.21	148.32	124.30	106.13	91.99						
23	1.97	4.76	9.25	22.30	37.53	43.38	64.02	84.38	124.54	164.15	242.27	319.33	320.87	244.10	193.70	158.54	132.87	113.45	98.33						
24	2.06	4.96	9.65	23.27	39.16	45.26	66.80	88.05	129.95	171.29	252.80	333.21	342.02	260.19	206.47	169.00	141.63	120.92	40.34						
25	2.15	5.17	10.06	24.24	40.79	47.15	69.59	91.72	135.37	178.43	263.33	347.10	363.62	276.62	219.51	179.67	150.57	128.56							
26	2.23	5.38	10.46	25.21	42.43	49.04	72.37	95.39	140.78	185.56	273.87	360.98	385.66	293.38	232.81	190.55	159.69	122.43							
28	2.40	5.79	11.26	27.15	45.69	52.81	77.94	102.73	151.61	199.84	294.93	388.75	431.00	327.87	260.19	212.96	178.47								
30	2.57	6.20	12.07	29.09	48.95	56.58	83.50	110.07	162.44	214.11	316.00	416.51	477.99	363.62	288.56	236.18	128.92								
32	2.75	6.62	12.87	31.02	52.22	60.35	89.07	117.40	173.27	228.39	337.07	444.28	526.58	400.58	317.89	260.19									
35	3.00	7.24	14.08	33.93	57.11	66.01	97.42	128.41	189.52	249.80	368.67	485.93	602.34	458.22	363.62	142.51									
40	3.43	8.27	16.09	38.78	65.27	75.44	111.34	146.75	216.59	285.48	421.34	555.35	688.02	559.83	254.20										ملد
45	3.86	9.31	18.10	43.63	73.43					321.17															*
	TYPE	A LUE	BRICATI	ION			ГҮРЕ В	LUBRI	CATION	٧							TY	PE C LI	JBRICA	ATION					

Horsepower Ratings - Single Strand Roller Chain No. 180H

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket									
in small sprocket	2	5	10	25	37	50	75	100	150	200	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	2000	4500
11	0.99	2.40	4.66	11.24	16.38	21.87	32.27	42.54	62.78	82.75	122.13	148.32	106.13	80.73	64.07	52.44	43.95	37.52	32.52	28.54	22.65	18.54	15.54		
12	1.09	2.62	5.09	12.26	17.87	23.86	35.21	46.41	68.49	90.28	133.24	169.00	120.92	91.99	73.00	59.75	50.07	42.75	37.06	32.52	25.81	21.12	2.40		
13	1.18	2.83	5.51	13.29	19.36	25.84	38.14	50.28	74.20	97.80	144.34	190.25	136.35	103.72	82.31	67.37	56.46	48.21	41.79	36.67	29.10	23.82			
14	1.27	3.05	5.94	14.31	20.85	27.83	41.08	54.14	79.91	105.32	155.44	204.89	152.38	115.92	91.99	75.29	63.10	53.87	46.70	40.98	32.52	10.23			
15	1.36	3.27	6.36	15.33	22.33	29.82	44.01	58.01	85.61	112.85	166.55	219.52	169.00	128.56	102.02	83.50	69.98	59.75	51.79	45.45	36.07				
16	1.45	3.49	6.78	16.35	23.82	31.81	46.94	61.88	91.32	120.37	177.65	234.16	186.17	141.63	112.39	91.99	77.09	65.82	57.05	50.07	39.74				
17	1.54	3.71	7.21	17.37	25.31	33.80	49.88	65.74	97.03	127.89	188.75	248.79	203.90	155.11	123.09	100.75	84.43	72.09	62.49	54.84					
18	1.63	3.92	7.63	18.40	26.80	35.78	52.81	69.61	102.74	135.42	199.86	263.43	222.15	169.00	134.11	109.77	91.99	78.54	68.08	59.75					
19	1.72	4.14	8.06	19.42	28.29	37.77	55.75	73.48	108 45	142 94	210.96	278.06	240.92	183 27	145 44	119 04	99.76	85.18	73.83	64.80					
20	1.81	4.36	8.48	20.44	29.78	39.76	58.68				222.06							91.99	79.74	55.31					
21	1.90	4.58	8.90	21.46	31.27	41.75	61.62	81.21	119.86	157.99	233.17	307.33	279.94	212.96	169.00	138.32	115.92	98.97	85.79						
22	1.99	4.80	9.33	22.48	32.76	43.74	64.55	85.08	125.57	165.51	244.27	321.97	300.17	228.35	181.21	148.32	124.30	106.13	87.35						
23	2.08	5.01	9.75	23.50	34.25	45.72	67 48	88.95	131 28	173 03	255.37	336 60	320 87	244 10	193 70	158 54	132 87	113 45	29.32						
24	2.17	5.23	10.18	24.53	35.74	47.71	70.42			180.56						169.00			20.02						
25	2.26	5.45	10.60	25.55	37.22	49.70	73.35				277.58														
26	2.35	5.67	11.03	26.57	38.71	51.69	76.29	100.55	148.40	195.60	288.68	380.51	385.66	293.38	232.81	190.55	159.69	37.53							
28	2.53	6.10	11.87	28.61	41.69	55.66	82.15	100 20	150.01	210.65	310.89	400.77	421.00	227 27	260.10	212.06	1/6 22								
30	2.55	6.54	12.72	30.66	44.67	59.64	88.02				333.09														
32	2.89	6.98	13.57	32.70	47.65	63.62		123.75							317.89		00.00								
35	3.17	7.63	14.84	35.77	52.11	69.58		135.36			388.61														
	•																								
40	3.62	8.72	16.96	40.88	59.56						444.13				123.60										*
45	4.07	9.81	19.08	45.99	67.00						499.64	058.57	750.00	333.00											
	TYPE	E A LUE	BRICAT	ION			TYPE B	LUBRI	CATION	١							TYI	PE C LU	JBRICA	TION					

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 200

# of teeth										Revo	lution	s Per I	/linute	– Sma	all Spro	ocket									
in small sprocket	2	5	10	25	40	50	75	100	150	200	250	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	4500
11	1.25	3.02	5.88	14.16	22.23	27.54	40.65	53.58	79.08	104.24	129.14	153.84	161.36	115.46	87.83	69.70	57.05	47.81	40.82	35.38	31.05	24.64	20.17		
12	1.37	3.29	6.41	15.45	24.25	30.05	44.35	58.45	86.27	113.71	140.88	167.82	183.86	131.56	100.08	79.42	65.00	54.48	46.51	40.32	35.38	28.08	22.98		
13	1.48	3.57	6.94	16.73	26.28	32.55	48.04	63.33	93.46	123.19	152.62	181.81	207.31	148.34	112.85	89.55	73.30	61.43	52.45	45.46	39.90	31.66			
14	1.59	3.84	7.48	18.02	28.30	35.06	51.74	68.20	100.65	132.66	164.36	195.79	231.69	165.78	126.11	100.08	81.91	68.65	58.61	50.80	44.59	35.38			
15	1.71	4.12	8.01	19.31	30.32	37.56	55.43	73.07	107.84	142.14	176.09	209.78	256.95	183.86	139.87	110.99	90.85	76.13	65.00	56.34	49.45	37.46			
16	1.82	4.39	8.55	20.60	32.34	40.06	59.13	77.94	115.03	151.61	187.83	223.76	283.07	202.55	154.08	122.27	100.08	83.87	71.61	62.07	54.48				
17	1.94	4.67	9.08	21.88	34.36	42.57	62.83	82.81	122.22	161.09	199.57	237.75	310.02	221.83	168.75	133.91	109.61	91.86	78.43	67.98	59.66				
18	2.05	4.94	9.61	23.17	36.38	45.07	66.52	87.68	129.41	170.57	211.31	251.73	331.81	241.69	183.86	145.90	119.42	100.08	85.45	74.07	65.00				
19	2.16	5.22	10.15	24.46	38.40	47.58	70.22	92.55	136.59	180.04	223.05	265.72	350.24	262.11	199.39	158.23	129.51	108.53	92.67	80.32	2.22				
20	2.28	5.49	10.68	25.74	40.42	50.08	73.91	97.42	143.78	189.52	234.79	279.70	368.67	283.07	215.34	170.88	139.87	117.21	100.08	86.75					
21	2.39	5.77	11.22	27.03	42.45	52.59	77.61	102.29	150.97	198.99	246.53	293.69	387.11	304.56	231.69	183.86	150.49	126.11	107.68	32.68					
22	2.51	6.04	11.75	28.32	44.47	55.09	81.30	107.17	158.16	208.47	258.27	307.68	405.54	326.57	248.43	197.15	161.36	135.23	115.46						
23	2.62	6.31	12.28	29.61	46.49	57.59	85.00	112.04	165.35	217.95	270.01	321.66	423.97	349.09	265.56	210.74	172.49	144.55	104.48						
24	2.73	6.59	12.82	30.89	48.51	60.10	88.70	116.91	172.54	227.42	281.75	335.65	442.41	372.10	283.07	224.63	183.86	154.08	21.71						
25	2.85	6.86	13.35	32.18	50.53	62.60	92.39	121.78	179.73	236.90	293.49	349.63	460.84	395.60	300.94	238.82	195.47	163.81							*
26	2.96	7.14	13.89	33.47	52.55	65.11	96.09	126.65	186.92	246.37	305.23	363.62	479.27	419.57	319.18	253.29	207.31	151.14							X
	TYPI	E A LUI	BRICAT	ION			TYP	E B LU	BRICAT	ΓΙΟΝ								TYPE (C LUBR	RICATIO	N				

Horsepower Ratings - Single Strand Roller Chain No. 200H

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket									
in small sprocket	2	5	10	25	33	50	75	100	150	200	250	300	400	500	600	700	800	900	1000	1100	1200	1400	1600	1800	4500
11	1.37	3.31	6.44	15.51	20.25	30.17	44.53	58.70	86.63	114.18	141.46	168.52	161.36	115.46	87.83	69.70	57.05	47.81	40.82	35.38	31.05	24.64	20.17		
12	1.50	3.61	7.02	16.92	22.09	32.92	48.58	64.03	94.51	124.57	154.32	183.84	183.86	131.56	100.08	79.42	65.00	54.48	46.51	40.32	35.38	28.08	18.78		
13	1.62	3.91	7.61	18.33	23.93	35.66	52.63	69.37	102.38	134.95	167.18	199.16	207.31	148.34	112.85	89.55	73.30	61.43	52.45	45.46	39.90	31.66			
14	1.75	4.21	8.19	19.74	25.77	38.40	56.68	74.71	110.26	145.33	180.04	214.48	231.69	165.78	126.11	100.08	81.91	68.65	58.61	50.80	44.59	35.38			
15	1.87	4.51	8.78	21.15	27.61	41.15	60.73	80.04	118.13	155.71	192.90	229.80	256.95	183.86	139.87	110.99	90.85	76.13	65.00	56.34	49.45				
16	2.00	4.81	9.36	22.56	29.45	43.89	64.77	85.38	126.01	166.09	205.76	245.12	283.07	202.55	154.08	122.27	100.08	83.87	71.61	62.07	54.48				
17	2.12	5.11	9.95	23.97	31.29	46.63	68.82	90.71	133.88	176.47	218.62	260.44	310.02	221.83	168.75	133.91	109.61	91.86	78.43	67.98	59.66				
18	2.25	5.41	10.53	25.38	33.13	49.38	72.87	96.05	141.76	186.85	231.48	275.76	337.77	241.69	183.86	145.90	119.42	100.08	85.45	74.07	11.75				
19	2.37	5.71	11.12	26.79	34.97	52.12	76.92	101.39	149.63	197.23	244.35	291.08	366.30	262.11	199.39	158.23	129.51	108.53	92.67	80.32					
20	2.50	6.02	11.70	28.20	36.82	54.86	80.97	106.72	157.51	207.61	257.21	306.40	395.60	283.07	215.34	170.88	139.87	117.21	100.08	31.07					
21	2.62	6.32	12.29	29.61	38.66	57.60	85.02	112.06	165.38	217.99	270.07	321.72	425.64	304.56	231.69	183.86	150.49	126.11	107.68						
22	2.75	6.62	12.87	31.02	40.50	60.35	89.07	117.40	173.26	228.37	282.93	337.04	456.40	326.57	248.43	197.15	161.36	135.23	86.70						
23	2.87	6.92	13.46	32.43	42.34	63.09	93 11	122 73	181 14	238 75	295.79	352 36	464 44	349 09	265 56	210 74	172 49	144 55	11 76						
24	3.00	7 22	14.04	33.84	44 18	65.83	97 16				308.65								11.70						
25	3.12	7.52	14.63	35.25	46.02	68.58	00																		
26	3.24																								*
25	-	3.24 7.82 15.21 36.66 47.86 71.32 105.26 138.74 204.76 269.89 334.37 398.32 52 TYPE A LUBRICATION TYPE B LUBRICATION												110.07	010.10	200.20			C LUBF	RICATIO	N				

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

^{*}For optimum results, consult Diamond Chain for drives operating in the shaded area.

Horsepower Rating Tables

Standard and Heavy Series Power Transmission Roller Chains

Horsepower Ratings - Single Strand Roller Chain No. 240

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket								
in small sprocket	2	5	10	25	36	50	75	100	150	200	250	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
11	2.02	4.86	9.46	22.81	32.36	44.36	65.47	86.30	127.37	167.88	207.99	247.77	186.70	133.59	101.63	80.65	66.01	55.32	47.23	40.94	35.93	31.87	28.51	
12	2.20	5.31	10.32	24.88	35.31	48.40	71.43	94.15	138.95	183.14	226.89	270.30	212.73	152.22	115.80	91.89	75.21	63.03	53.82	46.65	40.94	36.31	2.11	
13	2.39	5.75	11.18	26.95	38.25	52.43	77.38	101.99	150.53	198.41	245.80	292.82	239.87	171.64	130.57	103.61	84.81	71.07	60.68	52.60	46.16	38.13		
14	2.57	6.19	12.04	29.02	41.19	56.46	83.33	109.84	162.11	213.67	264.71	315.34	268.07	191.82	145.92	115.80	94.78	79.43	67.82	58.78	51.59			
15	2.75	6.63	12.90	31.10	44.13	60.50	89.28	117.68	173.68	228.93	283.62	337.87	297.30	212.73	161.83	128.42	105.11	88.09	75.21	65.19				
16	2.94	7.08	13.76	33.17	47.08	64.53	95.24	125.53	185.26	244.19	302.53	360.39	327.52	234.35	178.28	141.47	115.80	97.04	82.86	71.82				
17	3.12	7.52	14.62	35.24	50.02	68.56	101.19	133.37	196.84	259.45	321.43	382.92	358.70	256.66	195.25	154.94	126.82	106.28	90.74					
18	3.30	7.96	15.48	37.32	52.96	72.59	107.14	141.22	208.42	274.71	340.34	405.44	390.81	279.64	212.73	168.81	138.17	115.80	98.87					
19	3.49	8.40	16.34	39.39	55.90	76.63	113.09	149.06	220.00	289.98	359.25	427.97	423.82	303.26	230.70	183.08	149.84	125.58	3.20					
20	3.67	8.84	17.20	41.46	58.84	80.66	119.04	156.91	231.58	305.24	378.16	450.49	457.72	327.52	249.15	197.72	161.83	135.62						
21	3.85	9.29	18.07	43.54	61.79	84.69	125.00	164.76	243.16	320.50	397.07	473.02	492.48	352.39	268.07	212.73	174.12	109.86						
22	4.04	9.73	18.93	45.61	64.73	88.73	130.95	172.60	254.74	335.76	415.97	495.54	528.07	377.85	287.44	228.10	186.70							
23	4.22	10.17	19.79	47.68	67.67	92.76	136.90	180.45	266.32	351.02	434.88	518.07	564.48	403.91	307.26	243.83	199.57							
24	4.40	10.61	20.65	49.76	70.61	96.79	142.85	188.29	277.89	366.29	453.79	540.59	601.69	430.53	327.52	259.91	188.30							
25	4.59	11.06	21.51	51.83	73.55	100.83	148.81	196.14	289.47	381.55	472.70	563.12	639.68	457.72	348.20	276.32	73.47							*
26	4.77	11.50	22.37	53.90	76.50	104.86	154.76	203.98	301.05	396.81	491.61	585.64	678.45	485.46	369.30	293.06								^
	TYPI	TYPE A LUBRICATION TYPE B LUBRICATION															TYPE	C LUBF	RICATIO	N				

Horsepower Ratings - Single Strand Roller Chain No. 240H

# of teeth										Revo	lution	s Per I	Minute	– Sma	all Spr	ocket								
in small sprocket	2	5	10	25	27	50	75	100	150	200	250	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
11	2.33	5.62	10.93	26.33	28.35	51.23	75.60	99.65	147.07	193.85	240.16	286.10	186.70	133.59	101.63	80.65	66.01	55.32	47.23	40.94	35.93	31.87	28.51	
12	2.54	6.13	11.92	28.73	30.93	55.88	82.48	108.71	160.44	211.48	262.00	312.11	212.73	152.22	115.80	91.89	75.21	63.03	53.82	46.65	40.94	36.31		
13	2.75	6.64	12.91	31.12	33.51	60.54	89.35	117.77	173.81	229.10	283.83	338.12	239.87	171.64	130.57	103.61	84.81	71.07	60.68	52.60	46.16			
14	2.97	7.15	13.91	33.52	36.09	65.20	96.22	126.83	187.18	246.72	305.66	364.13	268.07	191.82	145.92	115.80	94.78	79.43	67.82	58.78	18.18			
15	3.18	7.66	14.90	35.91	38.66	69.85	103.10	135.89	200.55	264.35	327.50	390.14	297.30	212.73	161.83	128.42	105.11	88.09	75.21	65.19				
16	3.39	8.17	15.89	38.30	41.24	74.51	109.97	144.95	213.92	281.97	349.33	416.15	327.52	234.35	178.28	141.47	115.80	97.04	82.86					
17	3.60	8.68	16.89	40.70	43.82	79.17	116.84	154.01	227.29	299.59	371.16	442.16	358.70	256.66	195.25	154.94	126.82	106.28	90.74					
18	3.81	9.19	17.88	43.09	46.40	83.83	123.72	163.07	240.66	317.21	392.99	468.17	390.81	279.64	212.73	168.81	138.17	115.80	16.92					
19	4.03	9.70	18.87	45.48	48.97	88.48	130.59	172.13	254.03	334.84	414.83	494.18	423.82	303.26	230.70	183.08	149.84	125.58						
20	4.24	10.21	19.87	47.88	51.55	93.14	137.46	181.18	267.40	352.46	436.66	520.19	457.72	327.52	249.15	197.72	161.83	98.33						
21	4.45	10.72	20.86	50.27	54.13	97.80	144.33	190.24	280.78	370.08	458.49	546.19	492.48	352.39	268.07	212.73	174.12							
22	4.66	11.23	21.85	52.67	56.71	102.45	151.21	199.30	294.15	387.71	480.33	572.20	528.07	377.85	287.44	228.10	186.70							
23	4.87	11.74	22.85	55.06	59.28	107.11	158.08	208.36	307.52	405.33	502.16	598.21	564.48	403.91	307.26	243.83	153.53							
24	5.09	12.26	23.84	57.45	61.86	111.77	164.95	217.42	320.89	422.95	523.99	624.22	601.69	430.53	327.52	259.91	48.97							
25	5.30	12.77	24.83	59.85	64.44	116.42	171.83	226.48	334.26	440.58	545.83	650.23	639.68	457.72	348.20	276.32								ماد
26	5.51	13.28	25.83	62.24	67.02	121.08	178.70	235.54	347.63	458.20	567.66	676.24	678.45	485.46	369.30	293.06								*
	TYP	TYPE A LUBRICATION TYPE B LUBRICATION								١							TYI	PE C LU	JBRICA	TION				

TYPE A LUBRICATION – MANUAL OR DRIP TYPE B LUBRICATION – OIL BATH OR SLINGER TYPE C LUBRICATION – OIL PUMP

See Lubrication Instructions in the Roller Chain Installation section.

Ratings shown are for standard steel chain. See the General Drive Selection section for service factors, selection factors and multiple strand factors.

 $\bigstar \mbox{For optimum results, consult Diamond Chain for drives operating in the shaded area. }$

Horsepower Rating Tables

Double-Pitch Power Transmission Roller Chains

Horsepower Ratings - Double-Pitch Chain No. 2040

# of teeth								Revo	lutions	Per Mini	ute – Sn	nall Spro	ocket							
in small sprocket	25	50	100	150	200	250	300	350	400	450	500	550	600	700	800	900	1000	1100	1200	1300
6 7 8 9	0.10 0.12 0.14 0.16	0.17 0.21 0.26 0.30	0.36 0.45 0.53	0.47 0.64 0.72	0.55 0.73 0.89	0.82 1.03	0.90 1.14	1.24	1.32											
10 11 12 13	0.18 0.20 0.22 0.24	0.34 0.38 0.42 0.46	0.61 0.69 0.77 0.84	0.84 0.96 1.07 1.18	1.04 1.19 1.34 1.48	1.22 1.40 1.58 1.76	1.37 1.59 1.80 2.01	1.50 1.76 2.00 2.23	1.62 1.90 2.17 2.44	1.71 2.03 2.33 2.62	1.79 2.14 2.47 2.79	1.86 2.24 2.60 2.94	2.32 2.70 3.07	2.88 3.30	3.47					
14 15 16 17	0.26 0.28 0.30 0.32	0.50 0.54 0.57 0.61	0.92 0.99 1.06 1.13	1.29 1.39 1.50 1.60	1.62 1.76 1.89 2.02	1.93 2.09 2.25 2.41	2.20 2.40 2.59 2.77	2.46 2.68 2.89 3.10	2.69 2.94 3.17 3.41	2.90 3.17 3.43 3.69	3.09 3.39 3.67 3.95	3.27 3.59 3.89 4.19	3.43 3.77 4.09 4.41	3.70 4.08 4.44 4.79	3.91 4.33 4.73 5.11	4.07 4.52 4.96 5.37	4.66 5.13 5.57	5.72		
18 19 20 21	0.34 0.36 0.38 0.40	0.65 0.68 0.72 0.76	1.20 1.27 1.34 1.41	1.70 1.80 1.89 1.99	2.15 2.28 2.40 2.52	2.57 2.72 2.87 3.01	2.95 3.12 3.30 3.47	3.30 3.50 3.70 3.89	3.63 3.85 4.07 4.28	3.93 4.17 4.41 4.64	4.21 4.47 4.73 4.97	4.47 4.75 5.02 5.28	4.71 5.01 5.29 5.57	5.13 5.46 5.77 6.07	5.48 5.83 6.17 6.50	5.77 6.14 6.51 6.85	5.99 6.39 6.77 7.13	6.16 6.58 6.97 7.35	6.71 7.11 7.50	
22 23 24 25	0.42 0.44 0.46 0.48	0.79 0.83 0.87 0.90	1.47 1.54 1.61 1.67	2.09 2.18 2.27 2.36	2.64 2.76 2.88 3.00	3.16 3.30 3.44 3.58	3.63 3.80 3.96 4.11	4.07 4.26 4.43 4.61	4.48 4.68 4.88 5.07	4.86 5.08 5.29 5.50	5.21 5.44 5.67 5.89	5.53 5.78 6.02 6.26	5.83 6.09 6.35 6.59	6.37 6.60 6.92 7.19	6.81 7.12 7.41 7.69	7.18 7.50 7.80 8.10	7.48 7.81 8.12 8.42	7.70 8.04 8.36 8.67	7.87 8.21 8.53 8.84	8.31 8.64 8.94
30 35 40 45	0.57 0.66 0.75 0.84	1.08 1.25 1.41 1.58	1.99 2.30 2.60 2.89	2.81 3.24 3.65 4.04	3.56 4.09 4.59 5.07	4.24 4.86 5.44 6.00	4.87 5.57 6.22 6.83	5.45 6.21 6.93 7.59	5.98 6.81 7.57 8.27	6.47 7.35 8.15 8.88	6.93 7.85 8.68 9.43	7.34 8.30 9.16 9.92	7.80 8.72 9.59 10.30	8.39 9.43 10.31 11.00	8.94 9.99 10.86 11.56	9.39 10.43 11.20 11.88	9.72 10.73 11.50 12.03	9.96 10.93 11.61	10.11 11.01	10.10
50 55 60	0.93 1.01 1.10	1.74 1.90 2.05	3.17 3.44 3.71	4.42 4.79 5.14	5.53 5.97 6.39	6.52 7.02 7.49	7.41 7.95 8.46	8.20 8.77 9.31	8.91 9.50 10.00	9.54 10.20 10.68	10.10 10.70 11.23	10.59 11.17 11.69	11.01 11.58 12.06	11.67 12.18	12.11	12.33				
	TYPE /	A LUBRIC	ATION	T	YPE B LU	BRICATIO	N						TYPE	C LUBRIC	CATION					

TYPE A LUBRICATION – MANUAL DRIP (4-10 DROPS PER MINUTE) OR OIL BATH TYPE B LUBRICATION – RAPID DRIP (20 DROPS PER MINUTE MINIMUM), OIL BATH OR OIL SLINGER TYPE C LUBRICATION – CONTINUOUS WITH OIL SLINGER OR OIL STREAM

Horsepower Rating Tables

Double-Pitch Power Transmission Roller Chains

Horsepower Ratings - Double-Pitch Chain No. 2050

# of teeth								Revo	lutions	Per Minu	ute – Sm	nall Spro	cket							
in small sprocket	25	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950
6 7 8 9	0.18 0.22 0.27 0.31	0.31 0.40 0.48 0.56	0.66 0.83 0.99	1.09 1.33	1.29 1.60	1.83	2.00													
10 11 12 13	0.35 0.39 0.43 0.47	0.64 0.72 0.80 0.87	1.14 1.29 1.44 1.59	1.56 1.78 1.99 2.20	1.90 2.19 2.47 2.75	2.20 2.55 2.89 3.23	2.44 2.86 3.26 3.65	2.64 3.12 3.58 4.03	2.80 3.34 3.86 4.36	3.53 4.10 4.65	4.30 4.90	5.11	5.29							
14 15 16 17	0.51 0.54 0.58 0.62	0.95 1.02 1.09 1.17	1.73 1.87 2.01 2.14	2.41 2.61 2.81 3.00	3.01 3.27 3.52 3.77	3.55 3.86 4.16 4.46	4.03 4.39 4.74 5.09	4.45 4.87 5.27 5.65	4.83 5.29 5.74 6.17	5.17 5.68 6.16 6.63	5.47 6.02 6.54 7.05	5.73 6.32 6.88 7.42	5.95 6.58 7.18 7.75	6.09 6.75 7.39 7.99	6.94 7.61 8.24	779 8.46	8.62			
18 19 20 21	0.66 0.69 0.73 0.77	1.24 1.31 1.38 1.45	2.27 2.41 2.54 2.67	3.19 3.38 3.56 3.74	4.01 4.25 4.48 4.71	4.75 5.03 5.31 5.59	5.42 5.75 6.07 6.38	6.03 6.40 6.76 7.11	6.58 6.99 7.38 7.77	7.09 7.52 7.95 8.37	7.54 8.01 8.47 8.91	7.94 8.45 8.93 9.40	8.31 8.84 9.35 9.84	8.56 9.12 9.65 10.16	8.84 9.42 9.97 10.50	9.08 9.68 10.25 10.80	9.28 9.90 10.49 11.06	10.08 10.69 11.28	11.44	
22 23 24 25	0.81 0.84 0.88 0.91	1.52 1.59 1.66 1.72	2.79 2.92 3.04 3.17	3.92 4.10 4.27 4.44	4.93 5.16 5.37 5.59	5.85 6.12 6.37 6.63	6.69 6.99 7.28 7.57	7.45 7.78 8.11 8.43	8.14 8.50 8.86 9.20	8.77 9.16 9.54 9.91	9.34 9.75 10.16 10.55	9.85 10.29 10.71 11.12	10.31 10.77 11.21 11.64	10.65 11.12 11.57 12.01	11.01 11.50 11.97 12.42	11.32 11.82 12.30 12.75	11.59 12.10 12.59 13.05	11.83 12.35 12.85 13.33	12.00 12.53 13.03 13.50	13.57
30 35 40 45	1.09 1.27 1.44 1.61	2.06 2.38 2.70 3.00	3.77 4.35 4.90 5.44	5.28 6.07 6.82 7.54	6.62 7.59 8.51 9.37	7.84 8.96 10.01 10.98	8.93 10.18 11.34 12.40	9.93 11.28 12.52 13.65	10.82 12.27 13.56 14.73	11.63 13.14 14.48 15.67	12.35 13.92 15.29 16.47	13.00 14.60 15.98 17.15	13.57 15.20 16.56 17.70	13.96 15.58 16.92 17.96	14.39 16.00 17.29 18.29	14.76 16.35 17.58 18.49	15.06 16.62 17.78	15.30 16.82	15.48 16.94	
50 55 60	1.78 1.95 2.11	3.31 3.60 3.90	5.96 6.45 6.95	8.23 8.90 9.52	10.19 10.95 11.70	11.90 12.75 13.55	13.39 14.30 15.12	14.67 15.60 16.45	15.78 16.67 17.54	16.71 17.57	17.49 18.37	18.08 18.91	18.62	18.80						
	TYPE A	A LUBE	T,	YPE B LU	BRICATIO	ON						TYI	PE C LUB	RICATIO	N					

TYPE A LUBRICATION – MANUAL DRIP (4-10 DROPS PER MINUTE) OR OIL BATH TYPE B LUBRICATION – RAPID DRIP (20 DROPS PER MINUTE MINIMUM), OIL BATH OR OIL SLINGER TYPE C LUBRICATION – CONTINUOUS WITH OIL SLINGER OR OIL STREAM

Double-Pitch Power Transmission Roller Chains

Horsepower Ratings - Double-Pitch Chain No. 2060

# of teeth								Revo	lutions	Per Min	ute – Sn	nall Spro	cket							
in small sprocket	25	50	75	100	125	150	175	200	225	250	275	300	350	400	450	500	550	600	650	700
6 7 8 9	0.30 0.38 0.45 0.52	0.66 0.80 0.94	0.88 1.10 1.31	1.06 1.35 1.63	1.57 1.91	1.75 2.16	1.90 2.38	2.57	2.74											
10 11 12 13	0.59 0.66 0.73 0.79	1.08 1.22 1.35 1.48	1.51 1.71 1.90 2.09	1.90 2.16 2.41 2.65	2.24 2.56 2.87 3.17	2.55 2.93 3.30 3.65	2.83 3.27 3.69 4.10	3.09 3.58 4.05 4.51	3.31 3.86 4.39 4.90	3.51 4.12 4.70 5.26	3.69 4.35 4.98 5.59	3.85 4.57 5.25 5.90	4.93 5.71 6.45	6.09 6.92	7.25					
14 15 16 17	0.86 0.93 0.99 1.06	1.60 1.73 1.85 1.98	2.28 2.46 2.64 2.82	2.90 3.13 3.37 3.59	3.47 3.76 4.04 4.32	4.00 4.34 4.67 5.00	4.50 4.88 5.26 5.63	4.96 5.39 5.82 6.23	5.39 5.87 6.34 6.79	5.80 6.32 6.83 7.33	6.18 6.74 7.29 7.83	6.53 7.14 7.73 8.30	7.16 7.85 8.52 9.16	7.71 8.48 9.21 9.92	8.10 8.92 9.71 10.47	8.51 9.40 10.25 11.06	10.70 11.59	11.99		
18 19 20 21	1.12 1.18 1.25 1.31	2.10 2.22 2.34 2.46	2.99 3.17 3.34 3.51	3.82 4.04 4.26 4.48	4.59 4.86 5.09 5.39	5.32 5.63 5.94 6.24	6.00 6.35 6.70 7.04	6.64 7.03 7.42 7.80	7.24 7.67 8.10 8.51	7.81 8.28 8.74 9.19	8.34 8.85 9.35 9.83	8.85 9.39 9.92 10.43	9.78 10.38 10.97 11.54	10.60 11.26 11.86 12.47	11.21 11.93 12.62 13.28	11.84 12.60 13.34 14.05	12.42 13.22 13.99 14.73	12.88 13.73 14.54 15.31	14.14 14.99 15.80	
22 23 24 25	1.37 1.44 1.50 1.56	2.57 2.69 2.81 2.92	3.67 3.84 4.00 4.17	4.69 4.90 5.11 5.32	5.65 5.90 6.15 6.36	6.54 6.83 7.12 7.41	7.38 7.71 8.04 8.36	8.17 8.54 8.90 9.26	8.92 9.32 9.72 10.10	9.63 10.06 10.49 10.90	10.30 10.76 11.21 11.65	10.93 11.42 11.90 12.37	12.09 12.63 13.16 13.58	13.06 13.63 14.18 14.72	13.92 14.54 15.15 15.75	14.73 15.39 16.03 16.65	15.44 16.12 16.77 17.40	16.05 16.76 17.44 18.09	16.57 17.30 18.00 18.67	17.78 18.40 19.09
30 35 40 45	1.86 2.16 2.45 2.74	3.48 4.03 4.56 5.08	4.96 5.72 6.46 7.18	6.33 7.29 8.21 9.09	7.60 8.73 9.82 10.85	8.79 10.08 11.31 12.48	9.86 11.29 12.65 13.93	10.95 12.53 14.00 15.38	11.85 13.59 15.16 16.62	12.76 14.67 16.33 17.86	13.74 15.64 17.37 18.92	14.56 16.54 18.34 19.98	15.98 18.09 19.95 21.60	17.28 19.49 21.42 23.12	18.40 20.67 22.62 24.29	19.40 21.73 23.68 25.28	20.22 22.55 24.42 25.90	20.92 23.20 25.08	21.32 23.78	22.00
50 55 60	3.02 3.30 3.57	5.58 6.08 6.56	7.87 8.54 9.20	9.95 10.77 11.57	11.80 12.72 13.60	13.59 14.65 15.66	15.13 16.26 17.34	16.67 17.89 19.03	17.98 19.23 20.41	19.28 20.59 21.80	20.37 21.70 22.92	21.47 22.82 24.04	23.12 24.45	24.59 25.82	25.69					
	TYPE /	A LUBRIC	ATION		TYPE E	3 LUBRIC	ATION						TY	PE C LU	BRICATIO	N				

Horsepower Ratings - Double-Pitch Chain No. 2080

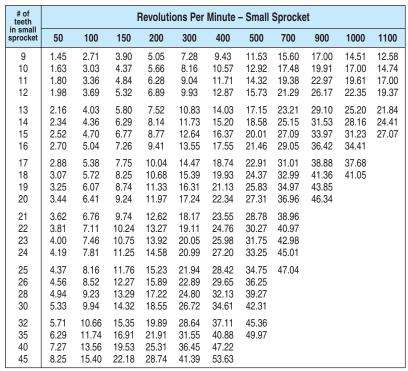
# of teeth								Revo	olutions	Per Mini	ute – Sn	nall Spro	cket							
in small sprocket	10	20	30	40	50	60	70	80	90	100	125	150	175	200	225	250	300	350	400	450
6 7 8 9	0.32 0.39 0.46 0.53	0.56 0.71 0.84 0.98	0.77 0.98 1.19 1.39	1.23 1.50 1.77	1.44 1.79 2.12	1.64 2.05 2.45	1.81 2.29 2.75	2.51 3.04	2.71 3.30	2.90 3.55	4.11	4.57								
10 11 12 13	0.59 0.66 0.72 0.79	1.11 1.24 1.37 1.50	1.59 1.78 1.97 2.16	2.03 2.28 2.53 2.78	2.44 2.76 3.06 3.36	2.83 3.20 3.57 3.92	3.20 3.63 4.05 4.46	3.54 4.03 4.51 4.97	3.87 4.41 4.94 5.46	4.18 4.78 5.36 5.93	4.88 5.62 6.33 7.03	5.48 6.36 7.21 8.02	6.01 7.02 7.95 8.89	7.56 8.66 9.75	8.07 9.27 10.42	9.82 11.08				
14 15 16 17	0.85 0.92 0.98 1.05	1.62 1.75 1.87 1.99	2.34 2.52 2.70 2.88	3.02 3.26 3.49 3.72	3.66 3.95 4.24 4.52	4.28 4.62 4.96 5.29	4.86 5.26 5.65 6.03	5.43 5.87 6.31 6.74	5.97 6.46 6.95 7.43	6.49 7.03 7.56 8.09	7.71 8.37 9.01 9.64	8.82 9.59 10.34 11.08	9.83 10.71 11.57 12.36	10.76 11.74 12.69 13.62	11.53 12.60 13.63 14.63	12.29 13.46 14.59 15.69	13.60 14.94 16.24 17.50	17.65 19.04		
18 19 20 21	1.11 1.17 1.23 1.30	2.11 2.23 2.35 2.47	3.06 3.23 3.40 3.58	3.95 4.18 4.40 4.63	4.80 5.08 5.36 5.63	5.62 5.95 6.27 6.59	6.41 6.78 7.15 7.51	7.17 7.58 8.00 8.40	7.90 8.36 8.81 9.26	8.60 9.11 9.60 10.09	10.26 10.87 11.47 12.05	11.80 12.50 13.19 13.87	13.21 14.01 14.78 15.54	14.52 15.40 16.26 17.10	15.60 16.55 17.48 18.39	16.76 17.80 18.81 19.79	18.72 19.90 21.04 22.14	20.38 21.67 22.91 24.11	21.77 23.18 24.52 25.80	
22 23 24 25	1.36 1.42 1.48 1.54	2.59 2.71 2.82 2.94	3.75 3.92 4.05 4.20	4.85 5.07 5.28 5.50	5.90 6.16 6.43 6.69	6.90 7.21 7.52 7.83	7.87 8.19 8.54 8.89	8.81 9.20 9.59 9.94	9.67 10.10 10.53 10.95	10.58 11.05 11.52 11.99	12.63 13.20 13.76 14.31	14.53 15.18 15.83 16.46	16.29 17.02 17.74 18.44	17.92 18.72 19.51 20.28	19.28 20.15 21.01 21.86	20.74 21.66 22.55 23.42	23.20 24.23 25.23 26.20	25.27 26.40 27.50 28.57	27.03 28.22 29.38 30.52	30.98 32.16
30 35 40 45	1.84 2.14 2.44 2.73	3.51 4.07 4.62 5.16	5.02 5.82 6.60 7.37	6.55 7.58 8.57 9.54	7.97 9.20 10.39 11.55	9.32 10.75 12.09 13.46	10.62 12.23 13.79 15.25	11.74 13.48 15.17 16.82	12.97 14.92 16.80 18.61	14.23 16.35 18.36 20.29	16.96 19.44 21.78 23.99	19.47 22.27 24.88 27.33	21.78 24.86 27.71 30.35	23.92 27.24 30.28 33.07	25.73 29.24 32.42 35.30	27.52 31.21 34.52 37.50	30.70 34.65 38.09 41.10	33.56 37.57 40.96 43.81	35.52 39.66 43.07	37.26
50 55 60	3.01 3.30 3.58	5.69 6.21 6.73	8.13 8.90 9.62	10.49 11.41 12.32	12.68 13.78 14.85	14.76 16.01 17.24	16.69 18.08 19.43	18.43 20.00 21.53	20.35 22.02 23.65	22.12 23.88 25.57	26.09 28.08 29.97	29.64 31.80 33.83	32.81 35.10 37.22	35.65 38.01 40.14	37.92 40.30	40.16 42.52	43.70			
		T۱	/PE A LU	BRICATIO	NC			T	YPE B LU	IBRICATIO	ON				T'	YPE C LU	IBRICATION	NC		

Horsepower Rating Tables

RING LEADER® 0-ring Chains

Horsepower Ratings - Single Strand No. 50 RING LEADER O-ring Chain

# of teeth				Revo	lutions	Per Minu	ute – Sm	nall Spro	cket			
in small sprocket	50	100	200	300	400	500	700	900	1200	1400	1800	2000
9 10 11 12	0.36 0.41 0.45 0.49	0.67 0.76 0.84 0.92	1.26 1.41 1.56 1.72	1.81 2.03 2.25 2.47	2.35 2.63 2.92 3.21	2.87 3.22 3.57 3.92	3.89 4.36 4.83 5.31	4.88 5.46 6.06 6.65	6.32 7.08 7.85 8.62	6.02 7.05 8.13 9.26	4.13 4.83 5.58 6.35	3.52 4.13 4.76 5.42
13 14 15 16	0.54 0.58 0.63 0.67	1.00 1.09 1.17 1.26	1.87 2.03 2.19 2.34	2.70 2.92 3.15 3.38	3.50 3.79 4.08 4.37	4.27 4.63 4.99 5.35	5.78 6.27 6.75 7.24	7.25 7.86 8.47 9.08	9.40 10.18 10.97 11.76	10.44 11.67 12.60 13.51	7.16 8.01 8.88 9.78	6.12 6.84 7.58 8.35
17 18 19 20	0.72 0.76 0.81 0.86	1.34 1.43 1.51 1.60	2.50 2.66 2.82 2.98	3.61 3.83 4.07 4.30	4.67 4.97 5.27 5.57	5.71 6.07 6.44 6.80	7.73 8.22 8.72 9.21	9.69 10.31 10.93 11.55	12.55 13.35 14.16 14.96	14.42 15.34 16.26 17.19	10.71 11.67 12.66 13.67	
21 22 23 24	0.90 0.95 1.00 1.04	1.69 1.77 1.86 1.95	3.14 3.31 3.47 3.63	4.53 4.76 5.00 5.23	5.87 6.17 6.47 6.78	7.17 7.54 7.91 8.29	9.71 10.21 10.71 11.22	12.17 12.80 13.43 14.06	15.77 16.58 17.40 18.22	18.12 19.05 19.99 20.93	14.71	
25 26 28 30	1.09 1.14 1.23 1.33	2.03 2.12 2.30 2.48	3.80 3.96 4.29 4.62	5.47 5.70 6.18 6.66	7.08 7.39 8.01 8.63	8.66 9.03 9.79 10.54	11.72 12.23 13.25 14.27	14.70 15.33 16.61 17.90	19.04 19.86 21.52 23.18	21.87 22.82		
32 35 40 45	1.42 1.57 1.81 2.06	2.66 2.93 3.38 3.84	4.96 5.46 6.31 7.16	7.14 7.86 9.08 10.32	9.25 10.19 11.77 13.36	11.30 12.45 14.39 16.34	15.30 16.86 19.47 22.12	19.19 21.14 24.42	24.86			


Horsepower Ratings - Single Strand No. 60 RING LEADER® O-ring Chain

# of teeth				Revo	lutions	Per Minu	ıte – Sm	all Spro	cket					
in small sprocket	50	100	150	200	300	400	500	600	700	900	1000	1200	1400	1500
9 10 11 12	0.62 0.70 0.77 0.85	1.16 1.30 1.44 1.58	1.67 1.87 2.07 2.28	2.16 2.43 2.69 2.95	3.12 3.49 3.87 4.25	4.04 4.53 5.02 5.51	4.94 5.53 6.13 6.74	5.82 6.52 7.23 7.94	6.68 7.49 8.30 9.12	8.38 9.39 10.41 11.43	9.21 10.32 11.44 12.57	8.77 10.27 11.85 13.51	6.96 8.15 9.41 10.72	6.28 7.35 8.48 9.66
13 14 15 16	0.92 1.00 1.08 1.16	1.73 1.87 2.01 2.16	2.49 2.69 2.90 3.11	3.22 3.49 3.76 4.03	4.64 5.02 5.41 5.80	6.01 6.51 7.01 7.52	7.34 7.96 8.57 9.19	8.65 9.37 10.10 10.83	9.94 10.77 11.60 12.44	12.46 13.50 14.55 15.60	13.70 14.85 15.99 17.15	15.23 17.02 18.85 20.21	12.08 13.51 14.98 16.50	10.90 12.18 13.51 14.88
17 18 19 20	1.24 1.31 1.39 1.47	2.31 2.45 2.60 2.75	3.32 3.53 3.74 3.96	4.30 4.58 4.85 5.13	6.20 6.59 6.99 7.38	8.03 8.54 9.05 9.57	9.81 10.44 11.06 11.69	11.56 12.30 13.04 13.78	13.28 14.13 14.98 15.83	16.65 17.71 18.78 19.85	18.31 19.48 20.65 21.82	21.58 22.95 24.33 25.71	18.07 19.69 21.35 23.06	
21 22 23 24	1.55 1.63 1.71 1.79	2.90 3.05 3.19 3.35	4.17 4.39 4.60 4.82	5.40 5.68 5.96 6.24	7.78 8.19 8.59 8.99	10.08 10.60 11.13 11.65	12.33 12.96 13.60 14.24	14.53 15.27 16.03 16.78	16.69 17.55 18.41 19.28	20.92 22.00 23.08 24.17	23.00 24.19 25.38 26.57	27.11 28.50 29.90 31.31		
25 26 28 30	1.87 1.95 2.12 2.28	3.50 3.65 3.95 4.26	5.04 5.25 5.69 6.13	6.52 6.81 7.37 7.94	9.40 9.80 10.62 11.44	12.17 12.70 13.76 14.82	14.88 15.53 16.82 18.12	17.54 18.29 19.82 21.35	20.14 21.02 22.77 24.53	25.26 26.35 28.55 30.75	27.77 28.97 31.39			
32 35 40 45	2.45 2.69 3.11 3.53	4.56 5.03 5.81 6.60	6.57 7.24 8.37 9.50	8.52 9.38 10.80 12.30	12.27 13.50 15.60 17.70	15.89 17.50 20.20 23.00	19.43 21.40 24.70 28.10	22.89 25.20 29.10 33.10	26.30 29.00 33.50	32.97				

Horsepower Rating Tables

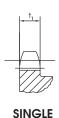
RING LEADER® 0-ring Chains

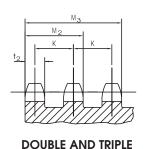
Horsepower Ratings - Single Strand No. 80 RING LEADER O-ring Chain

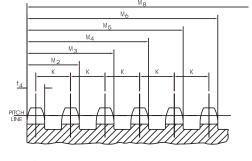
Horsepower Ratings - Single Strand No. 100 RING LEADER O-ring Chain

# of teeth			F	Revoluti	ons Per	Minute -	- Small	Sprocke	et		
in small sprocket	25	50	100	150	200	300	400	500	600	700	
9	1.49	2.78	5.19	7.47	9.68	13.94	18.06	22.08	26.02	29.63	
10	1.67	3.11	5.81	8.37	10.85	15.62	20.24	24.74	29.15	33.49	
11	1.85	3.45	6.44	9.28	12.02	17.32	22.43	27.42	32.31	37.12	
12	2.03	3.79	7.08	10.19	13.21	19.02	24.64	30.12	35.49	40.78	
13	2.22	4.13	7.72	11.11	14.40	20.74	26.87	32.84	38.70	44.46	
14	2.40	4.48	8.36	12.04	15.60	22.47	29.11	35.58	41.92	48.16	
15	2.59	4.83	9.01	12.97	16.80	24.20	31.36	38.33	45.17	51.89	
16	2.77	5.17	9.66	13.91	18.02	25.95	33.62	41.10	48.43	55.64	
17	2.96	5.52	10.31	14.85	19.24	27.71	35.90	43.88	51.70	59.40	
18	3.15	5.88	10.96	15.79	20.46	29.47	38.18	46.67	55.00		
19	3.34	6.23	11.62	16.74	21.69	31.24	40.48	49.48	58.30		
20	3.53	6.58	12.29	17.70	22.93	33.02	42.78	52.30	61.63		
21	3.72	6.94	12.95	18.65	24.17	34.81	45.10	55.13			
22	3.91	7.30	13.62	19.62	25.41	36.60	47.42	57.97			
23	4.10	7.66	14.29	20.58	26.66	38.40	49.75	60.82			
24	4.30	8.02	14.96	21.55	27.92	40.21	52.09	63.68			
25	4.49	8.38	15.63	22.52	29.18	42.02	54.44				
26	4.68	8.74	16.31	23.49	30.44	43.84	56.80				
28	5.07	9.47	17.67	25.45	32.97	47.50	61.53				
30	5.47	10.20	19.04	27.42	35.52	51.17	66.29				
32	5.86	10.94	20.41	29.40	38.09	54.86					
35	6.46	12.05	22.49	32.39	41.96	60.44					
40	7.46	13.92	25.97	37.41	48.47	69.81					
45	8.47	15.81	29.50	42.49	55.04						

Sprocket Information

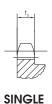

Pitch Diameter: The pitch diameter of a sprocket is the diameter of a circle followed by the centers of the chain pins as the sprocket revolves in mesh with the chain, and is a function of the chain pitch and of the number of teeth in the sprocket. This is a theoretical dimension, not directly measurable but for chain load calculations, one half the pitch diameter is equal to the "distance" in the (force x distance) formula.


Bottom Diameter: The bottom diameter of a sprocket is the diameter of a circle tangent to the bottoms of the tooth spaces. The tolerance on the bottom diameter must be entirely negative to ensure that the chain will mesh properly with the sprocket teeth.

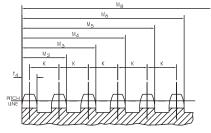

Caliper Diameter: Since the bottom diameter of a sprocket with an odd number of teeth cannot readily be measured directly, the following tables list caliper diameters which enable calculating the dimensions across the bottoms of tooth spaces most nearly opposite. As is true of bottom diameters, tolerances on caliper diameters must be entirely negative.

Outside Diameter: The outside diameter of a sprocket is comparatively unimportant as the tooth length is not vital to proper meshing with the chain. The outside diameter will vary depending on the type of cutter used.

QUADRUPLE AND OTHER MULTIPLES


Standard Series Sprockets


									о оргоо								
		All Sprockets		Single	Do	uble and Trip Strand	ole				For 4 or mo	re Strands				_ Matching	Hot Rolled
ASME/ANSI &	Pitch P	Roller	Roller	Strand t ₁												Tolerance on	Tolerance on
Diamond No.		Width W	Diam.	ou unu t	t ₂	M ₂	M ₃	t ₄	M ₂	M ₃	M ₄	M ₅	M ₆	M ₈	*K	"t" and "M"	"t" and "M"
25	0.250	0.125	0.130	0.110	0.107	0.359	0.611	0.096	0.348	0.600	0.852	1.104	1.356	1.860	0.252	-0.007	-0.021
35	0.375	0.188	0.200	0.168	0.162	0.561	0.960	0.149	0.548	0.947	1.346	1.745	2.144	2.942	0.399	-0.008	-0.027
41	0.500	0.250	0.306	0.227	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	-0.009	-0.032
40	0.500	0.312	0.312	0.284	0.275	0.841	1.407	0.256	0.822	1.388	1.954	2.520	3.086	4.218	0.566	-0.009	-0.035
50	0.625	0.375	0.400	0.343	0.332	1.045	1.758	0.311	1.024	1.737	2.450	3.163	3.876	5.302	0.713	-0.010	-0.036
60	0.750	0.500	0.469	0.459	0.444	1.341	2.238	0.418	1.315	2.212	3.109	4.006	4.903	6.697	0.897	-0.011	-0.036
80	1.000	0.625	0.625	0.575	0.557	1.710	2.863	0.526	1.679	2.832	3.985	5.138	6.291	8.597	1.153	-0.012	-0.040
100	1.250	0.750	0.750	0.692	0.669	2.077	3.485	0.633	2.041	3.449	4.857	6.265	7.673	10.489	1.408	-0.014	-0.046
120	1.500	1.000	0.875	0.924	0.894	2.683	4.472	0.848	2.637	4.426	6.215	8.004	9.793	13.371	1.789	-0.016	-0.057
140	1.750	1.000	1.000	0.924	0.894	2.818	4.742	0.848	2.772	4.696	6.620	8.544	10.468	14.316	1.924	-0.016	-0.057
160	2.000	1.250	1.125	1.156	1.119	3.424	5.729	1.063	3.368	5.673	7.978	10.283	12.588	17.198	2.305	-0.019	-0.062
180	2.250	1.406	1.406	1.301	1.259	3.851	6.443	1.197	3.789	6.381	8.973	11.565	14.157	19.341	2.592	-0.020	-0.068
200	2.500	1.500	1.562	1.389	1.344	4.161	6.978	1.278	4.095	6.912	9.729	12.546	15.363	20.997	2.817	-0.021	-0.072


^{*}K dimensions apply to double and triple strands also.

Sprocket Information

DOUBLE AND TRIPLE

QUADRUPLE AND OTHER MULTIPLES

Heavy Series Sprockets

		All Sprockets		Single	Do	uble and Trip	ple				For 4 or mo	re Strands				Matching	Hot Rolled
ASME/ANSI & Diamond No.	Pitch P	Roller Width W	Roller Diam.	Strand t ₁	t ₂	Strand M ₂	M ₃	t ₄	M ₂	M ₃	M ₄	M ₅	M ₆	M ₈	*K	Tolerance on "t" and "M"	Tolerance on "t" and "M"
60H	0.750	0.500	0.469	0.459	0.444	1.472	2.500	0.418	1.446	2.474	3.502	4.530	5.558	7.614	1.028	011	036
80H	1.000	0.625	0.625	0.575	0.557	1.840	3.123	0.526	1.809	3.092	4.375	5.568	6.941	9.507	1.283	012	040
100H	1.250	0.750	0.750	0.692	0.669	2.208	3.747	0.633	2.172	3.711	5.250	6.789	8.328	11.406	1.539	014	046
120H	1.500	1.000	0.875	0.924	0.894	2.818	4.742	0.848	2.772	4.696	6.620	8.544	10.468	14.316	1.924	016	057
140H	1.750	1.000	1.000	0.924	0.894	2.949	5.004	0.848	2.903	4.958	7.013	9.068	11.123	15.233	2.055	016	057
160H	2.000	1.250	1.125	1.156	1.119	3.555	5.991	1.063	3.499	5.935	8.371	10.807	13.243	18.115	2.436	019	062
180H	2.250	1.406	1.406	1.301	1.259	3.982	6.705	1.197	3.920	6.643	9.366	12.089	14.812	20.258	2.723	020	068
200H	2.500	1.500	1.562	1.389	1.344	4.427	7.510	1.278	4.361	7.444	10.527	13.610	16.693	22.859	3.083	021	072

^{*}K dimensions apply to double and triple strands also.

The following tables list the basic dimensions most common to sprockets. For verification of these values or more detailed information please contact a reputable sprocket manufacturer.

Sprocket Diameters - U.S.A. Std. No. 25 Bushing Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 11	0.500 0.576 0.653 0.731 0.809 0.887	0.583 0.669 0.754 0.837 0.919 1.002	0.370 0.432 0.523 0.591 0.679 0.748	be in the minus direction.	54 55 56 57 58 59	4.300 4.379 4.459 4.538 4.618 4.697	4.442 4.522 4.602 4.681 4.761 4.841	4.170 4.247 4.329 4.407 4.488 4.566	be in the minus direction.	102 103 104 105 106 107	8.118 8.198 8.277 8.357 8.437 8.516	8.264 8.344 8.424 8.503 8.583 8.662	7.988 8.067 8.147 8.226 8.307 8.385	be in the minus direction.
12 13 14 15 16 17	0.966 1.045 1.124 1.203 1.282 1.361	1.083 1.167 1.246 1.326 1.407 1.487	0.836 0.907 0.994 1.066 1.152 1.225	ld be in the mi al.	60 61 62 63 64 65	4.777 4.857 4.936 5.016 5.095 5.175	4.920 5.000 5.080 5.159 5.239 5.319	4.647 4.725 4.806 4.884 4.965 5.044	ld be in the mi al.	108 109 110 111 112 113	8.596 8.675 8.755 8.834 8.914 8.994	8.742 8.822 8.901 8.981 9.060 9.140	8.466 8.544 8.625 8.703 8.784 8.863	ld be in the mi al.
18 19 20 21 22 23	1.440 1.519 1.598 1.678 1.757 1.836	1.568 1.648 1.729 1.809 1.889 1.969	1.310 1.383 1.468 1.543 1.627 1.702	caliper diameters should l diameters are not critical.	66 67 68 69 70 71	5.254 5.334 5.413 5.493 5.572 5.652	5.398 5.478 5.558 5.637 5.717 5.796	5.124 5.203 5.283 5.362 5.442 5.521	caliper diameters should t diameters are not critical.	114 115 116 117 118 119	9.073 9.153 9.232 9.312 9.391 9.471	9.220 9.299 9.379 9.458 9.538 9.618	8.943 9.022 9.102 9.181 9.261 9.340	bottom diameters and caliper diameters should I Tolerances on outside diameters are not critical
24 25 26 27 28 29	1.915 1.995 2.074 2.154 2.233 2.312	2.049 2.129 2.209 2.289 2.369 2.449	1.785 1.861 1.944 2.020 2.103 2.179	bottom diameters and caliper diamet Tolerances on outside diameters are	72 73 74 75 76 77	5.732 5.811 5.891 5.970 6.050 6.129	5.876 5.956 6.035 6.115 6.195 6.274	5.602 5.680 5.761 5.839 5.920 5.998	and side	120 121 122 123 124 125	9.550 9.630 9.709 9.789 9.869 9.949	9.697 9.777 9.856 9.936 10.016 10.095	9.420 9.499 9.579 9.658 9.739 9.818	and caliper d tside diameter
30 31 32 33 34 35	2.392 2.471 2.551 2.630 2.710 2.789	2.529 2.609 2.688 2.768 2.848 2.928	2.262 2.338 2.421 2.497 2.580 2.656	om diameters erances on out	78 79 80 81 82 83	6.209 6.288 6.368 6.448 6.527 6.607	6.354 6.433 6.513 6.593 6.672 6.752	6.079 6.157 6.238 6.317 6.397 6.476	bottom diameters Tolerances on out	126 127 128 129 130 131	10.028 10.108 10.187 10.267 10.346 10.426	10.175 10.255 10.334 10.414 10.493 10.573	9.898 9.977 10.057 10.136 10.216 10.295	om diameters grances on out
36 37 38 39 40 41	2.869 2.948 3.028 3.107 3.187 3.266	3.008 3.087 3.167 3.247 3.327 3.406	2.739 2.815 2.898 2.975 3.057 3.134	ances on bott Tole	84 85 86 87 88 89	6.686 6.766 6.845 6.925 7.004 7.084	6.832 6.911 6.991 7.070 7.150 7.230	6.556 6.635 6.715 6.794 6.874 6.953	l no	132 133 134 135 136 137	10.505 10.585 10.664 10.744 10.823 10.903	10.652 10.732 10.811 10.891 10.970 11.050	10.375 10.454 10.534 10.613 10.693 10.772	
42 43 44 45 46 47	3.346 3.425 3.505 3.584 3.664 3.743	3.486 3.566 3.646 3.725 3.805 3.885	3.216 3.293 3.375 3.452 3.534 3.611	Machining tolerances on	90 91 92 93 94 95	7.164 7.243 7.323 7.402 7.482 7.561	7.309 7.389 7.468 7.548 7.628 7.707	7.034 7.112 7.193 7.271 7.352 7.430	Machining tolerances	138 139 140 141 142 143	10.983 11.062 11.142 11.221 11.301 11.380	11.130 11.209 11.289 11.369 11.448 11.528	10.853 10.932 11.012 11.091 11.171 11.250	Machining tolerances on
48 49 50 51 52 53	3.823 3.902 3.982 4.061 4.141 4.220	3.964 4.044 4.124 4.203 4.283 4.363	3.693 3.770 3.852 3.929 4.011 4.088	- V	96 97 98 99 100 101	7.641 7.720 7.800 7.880 7.959 8.039	7.787 7.866 7.946 8.026 8.105 8.185	7.511 7.589 7.670 7.749 7.829 7.908	- V	144 145 146 147 148 149	11.460 11.540 11.619 11.699 11.773 11.858	11.607 11.687 11.767 11.846 11.926 12.005	11.330 11.409 11.489 11.567 11.649 11.727	

Odd tooth "bottom diameters" equal pitch minus .130".

Sprocket Information

Sprocket Diameters - U.S.A. Std. No. 35 Bushing Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10	0.750 0.864 0.980 1.096 1.214 1.331	0.88 1.00 1.13 1.26 1.38 1.50	0.550 0.642 0.780 0.879 1.014 1.117	inus direction.	54 55 56 57 58 59	6.449 6.569 6.688 6.807 6.927 7.046	6.66 6.78 6.90 7.02 7.14 7.26	6.249 6.366 6.488 6.604 6.727 6.844	inus direction.	102 103 104 105 106 107	12.177 12.297 12.416 12.535 12.655 12.774	12.40 12.52 12.64 12.76 12.87 12.99	11.977 12.095 12.216 12.334 12.455 12.573	be in the minus direction.
12 13 14 15 16 17	1.449 1.567 1.685 1.804 1.922 2.041	1.63 1.75 1.87 1.99 2.11 2.23	1.249 1.356 1.485 1.594 1.722 1.832	should be in the minus direction. critical.	60 61 62 63 64 65	7.165 7.284 7.404 7.523 7.642 7.762	7.38 7.50 7.62 7.74 7.86 7.98	6.965 7.082 7.204 7.321 7.442 7.560	should be in the minus direction. critical.	108 109 110 111 112 113	12.893 13.013 13.132 13.251 13.371 13.490	13.11 13.23 13.35 13.47 13.59 13.71	12.693 12.812 12.932 13.050 13.171 13.289	ıld be in the m sal.
18 19 20 21 22 23	2.159 2.278 2.397 2.516 2.635 2.754	2.35 2.47 2.59 2.71 2.83 2.95	1.959 2.070 2.197 2.309 2.435 2.547	meters are not	66 67 68 69 70 71	7.881 8.000 8.120 8.239 8.358 8.478	8.10 8.22 8.34 8.46 8.58 8.69	7.681 7.798 7.920 8.037 8.158 8.276	meters are not	114 115 116 117 118 119	13.609 13.729 13.848 13.968 14.087 14.206	13.83 13.95 14.07 14.19 14.31 14.43	13.409 13.528 13.648 13.767 13.887 14.005	bottom diameters and caliper diameters should Tolerances on outside diameters are not critical.
24 25 26 27 28 29	2.873 2.992 3.111 3.230 3.349 3.468	3.07 3.19 3.31 3.43 3.55 3.67	2.673 2.786 2.911 3.025 3.149 3.263	and side	72 73 74 75 76 77	8.597 8.716 8.836 8.955 9.074 9.194	8.81 8.93 9.05 9.17 9.29 9.41	8.397 8.514 8.636 8.753 8.874 8.992	and side	120 121 122 123 124 125	14.326 14.445 14.564 14.683 14.803 14.923	14.55 14.67 14.78 14.90 15.02 15.14	14.126 14.244 14.364 14.482 14.603 14.722	and caliper d tside diameter
30 31 32 33 34 35	3.588 3.707 3.826 3.945 4.064 4.183	3.79 3.91 4.03 4.15 4.27 4.39	3.388 3.502 3.626 3.741 3.864 3.979	bottom diameters Tolerances on out	78 79 80 81 82 83	9.313 9.432 9.552 9.671 9.790 9.910	9.53 9.65 9.77 9.89 10.01 10.13	9.113 9.230 9.352 9.469 9.590 9.708	bottom diameters and on Tolerances on outside of	126 127 128 129 130 131	15.042 15.161 15.280 15.400 15.519 15.638	15.26 15.38 15.50 15.62 15.74 15.86	14.842 14.960 15.080 15.199 15.319 15.437	bottom diameters Tolerances on out
36 37 38 39 40 41	4.303 4.422 4.541 4.660 4.780 4.899	4.51 4.63 4.75 4.87 4.99 5.11	4.103 4.218 4.341 4.456 4.580 4.695		84 85 86 87 88 89	10.029 10.148 10.268 10.387 10.506 10.626	10.25 10.37 10.49 10.61 10.73 10.84	9.829 9.946 10.068 10.185 10.306 10.424		132 133 134 135 136 137	15.758 15.877 15.997 16.116 16.235 16.355	15.98 16.10 16.22 16.34 16.46 16.58	15.558 15.676 15.797 15.915 16.035 16.154	
42 43 44 45 46 47	5.018 5.137 5.257 5.376 5.495 5.614	5.23 5.35 5.47 5.59 5.71 5.83	4.818 4.934 5.057 5.173 5.295 5.411	Machining tolerances on	90 91 92 93 94 95	10.745 10.864 10.984 11.103 11.222 11.342	10.96 11.08 11.20 11.32 11.44 11.56	10.545 10.662 10.784 10.901 11.022 11.140	Machining tolerances on	138 139 140 141 142 143	16.474 16.593 16.713 16.832 16.951 17.071	16.70 16.81 16.93 17.05 17.17 17.29	16.274 16.392 16.513 16.631 16.751 16.870	Machining tolerances on
48 49 50 51 52 53	5.734 5.853 5.972 6.091 6.211 6.330	5.95 6.07 6.19 6.31 6.43 6.54	5.534 5.650 5.772 5.888 6.011 6.127	2	96 97 98 99 100 101	11.461 11.580 11.700 11.819 11.938 12.058	11.68 11.80 11.92 12.04 12.16 12.28	11.261 11.378 11.500 11.617 11.738 11.856	2	144 145 146 147 148 149	17.190 17.309 17.429 17.548 17.668 17.787	17.41 17.53 17.65 17.77 17.89 18.01	16.990 17.108 17.229 17.347 17.468 17.586	2

Odd tooth "bottom diameters" equal pitch minus .200".

Sprocket Diameters - U.S.A. Std. No. 40 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth
6 7 8 9 10	1.000 1.152 1.307 1.462 1.618	1.170 1.340 1.510 1.670 1.840	0.688 0.811 0.995 1.128 1.306	us direction.	54 55 56 57 58 59 60	8.599 8.758 8.917 9.076 9.236	8.890 9.040 9.200 9.360 9.520	8.287 8.443 8.605 8.761 8.924	us direction.	102 103 104 105 106	16.236 16.395 16.555 16.714 16.873	16.530 16.690 16.850 17.010 17.170	15.924 16.081 16.243 16.400 16.561
2 3 4 5	1.618 1.775 1.932 2.089 2.247 2.405 2.563	1.840 2.000 2.170 2.330 2.490 2.650 2.810	1.306 1.445 1.620 1.762 1.935 2.080 2.251 2.397 2.567 2.716 2.884 3.034 3.201 3.201 3.519 3.669 3.836 3.988 4.306 4.471	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	60 61 62 63 64	9.395 9.554 9.713 9.872 10.031 10.190 10.349	9.040 9.200 9.360 9.520 9.680 9.840 10.000 10.160 10.480 10.800 11.120 11.270 11.430 11.590 11.750 11.910 12.230 12.390 12.550	8.924 9.080 9.242 9.398 9.560 9.716 9.878	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	106 107 108 109 110 111 112 113	16.873 17.032 17.191 17.350 17.509 17.669 17.828 17.987	17.170 17.330 17.480 17.640 17.800 17.960 18.120 18.280	16.561 16.718 16.879 17.036 17.197 17.355 17.516
16 17 18 19 20 21	2.563 2.721 2.879 3.038 3.196 3.355 3.513 3.672	2.810 2.980 3.140 3.300 3.460 3.620 3.780	2.397 2.567 2.716 2.884 3.034	bottom diameters and caliper diameters should Tolerances on outside diameters are not critical.	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	10.508 10.667 10.826 10.986	10.640 10.800 10.960 11.120 11.270	9.878 10.034 10.196 10.352 10.514 10.670 10.833 10.989 11.151 11.307 11.469 11.625 11.787 11.943 12.105	eters should re not critical	114 115 116 117	17.987 18.146 18.305 18.464 18.623	18.440 18.600 18.760	17.036 17.197 17.355 17.516 17.673 17.834 17.991 18.152 18.309 18.471 18.628 18.789 18.946 19.107 19.264 19.425 19.583 19.744 19.899 20.052 20.220 20.380 20.538 20.699 20.856 21.017 21.174 21.335 21.483 21.683 21.683 21.493 22.290 22.248 22.290 22.290 22.448 22.296 23.245 23.245 23.245 23.245 23.245
22 23 24 25 26 27	3.831 3.989 4.148 4.307	3.300 3.460 3.620 3.780 3.940 4.100 4.260 4.420 4.580	3.351 3.519 3.669 3.836 3.988	caliper diam diameters a	71 72 73 74 75	11.145 11.304 11.463 11.622 11.781 11.940	11.590 11.750 11.910 12.070 12.230	10.989 11.151 11.307 11.469 11.625	caliper diam diameters a	118 119 120 121 122 123 124 125	18.146 18.305 18.464 18.623 18.783 18.942 19.101 19.260 19.419 19.578 19.737 19.897 20.056	19.080 19.240 19.390 19.550 19.710 19.870	18.628 18.789 18.946 19.107 19.264
28 29 30 31 32 33	4.466 4.625 4.783 4.942 5.101 5.260	4.740 4.900 5.060 5.220 5.380 5.540	4.154 4.306 4.471 4.624 4.789 4.942	ameters and s on outside	76 77 78 79 80	12.099 12.258 12.417 12.577 12.736 12.895	12.390 12.550 12.710 12.870 13.030 13.190	12.262 12.424	ameters and s on outside	124 125 126 127 128 129	19.737 19.897 20.056 20.215 20.374	20.030 20.190 20.350 20.510 20.670 20.830	19.425 19.583 19.744 19.899 20.062
34 35 36 37 38 39	5.419 5.578 5.737 5.896 6.055 6.214	5.700 5.860 6.020	5.107 5.260 5.425 5.579 5.743 5.897 6.061 6.215 6.379	on bottom di Tolerance	82 83 84 85 86 87	13.054 13.213 13.372 13.531 13.690 13.849	13.340 13.500 13.660 13.820 13.980	12.742 12.899 13.060 13.217 13.378	on bottom di Tolerance	130 131 132 133 134 135	20.692 20.851 21.011 21.170 21.329	20.990 21.150 21.310 21.460 21.620 21.780	20.380 20.538 20.699 20.856 21.017
40 41 42 43	6.373	6.180 6.330 6.490 6.650 6.810 6.970 7.130 7.290 7.450 7.610 7.770 7.930 8.090 8.250 8.410 8.570 8.730	5.897 6.061 6.215 6.379 6.534	tolerances o	87 88 89 90 91	14.008 14.168 14.327 14.486	13.340 13.500 13.660 13.820 13.980 14.140 14.300 14.460 14.620 14.780 15.260 15.410 15.730 15.730 16.050 16.210	12.742 12.899 13.060 13.217 13.378 13.535 13.696 13.854 14.015	tolerances o	135 136 137 138 139 140	20.215 20.374 20.533 20.692 20.851 21.170 21.329 21.488 21.647 21.806 21.965 22.124 22.284 22.443 22.602 22.761 22.920 23.079 23.388 23.398 23.557 23.716	21.780 21.940 22.100 22.260 22.420 22.580	21.174 21.335 21.493 21.653 21.811
44 45 46 47 48	6.691 6.850 7.009 7.168 7.327 7.486 7.645 7.804 7.963 8.122 8.281 8.440	7.290 7.450 7.610 7.770 7.930	6.534 6.697 6.852 7.015 7.170 7.333 7.488 7.651 7.806 7.969 8.124	Machining	88 89 90 91 92 93 94 95 96 97 98 99	14.645 14.804 14.963 15.122 15.281	14.940 15.100 15.260 15.410 15.570	14.333 14.490 14.651 14.808 14.969 15.126 15.288 15.445	Machining	140 141 142 143 144 145	22.284 22.443 22.602 22.761 22.920	22.740 22.900	21.972 22.129 22.290 22.448 22.608
49 50 51 52 53	7.804 7.963 8.122 8.281 8.440	8.090 8.250 8.410 8.570 8.730	7.488 7.651 7.806 7.969 8.124		97 98 99 100 101	15.440 15.600 15.759 15.918 16.077	15.730 15.890 16.050 16.210 16.370	15.126 15.288 15.445 15.606 15.763		145 146 147 148 149	23.079 23.238 23.398 23.557 23.716	23.220 23.370 23.530 23.690 23.850 24.010	22.766 22.926 23.084 23.245 23.403

Sprocket Information

1-800-US-CHAIN

Sprocket Diameters - U.S.A. Std. No. 41 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10	1.000 1.152 1.307 1.462 1.618 1.775	1.17 1.34 1.51 1.67 1.84 2.00	0.694 0.817 1.001 1.134 1.312 1.451	should be in the minus direction. critical.	54 55 56 57 58 59	8.599 8.758 8.917 9.076 9.236 9.395	8.89 9.04 9.20 9.36 9.52 9.68	8.293 8.449 8.611 8.767 8.930 9.086	ninus direction.	102 103 104 105 106 107	16.236 16.395 16.555 16.714 16.873 17.032	16.53 16.69 16.85 17.01 17.17 17.33	15.930 16.087 16.249 16.406 16.567 16.724	be in the minus direction.
12 13 14 15 16 17	1.932 2.089 2.247 2.405 2.563 2.721 2.879	2.17 2.33 2.49 2.65 2.81 2.98 3.14	1.626 1.768 1.941 2.086 2.257 2.403	ould be in the m ical.	60 61 62 63 64 65	9.554 9.713 9.872 10.031 10.190 10.349	9.84 10.00 10.16 10.32 10.48 10.64	9.248 9.404 9.566 9.722 9.884 10.040 10.202	should be in the minus direction. critical.	108 109 110 111 112 113	17.191 17.350 17.509 17.669 17.828 17.987 18.146	17.48 17.64 17.80 17.96 18.12 18.28	16.885 17.042 17.203 17.361 17.522 17.679	ould be in the mical.
19 20 21 22 23	3.038 3.196 3.355 3.513 3.672 3.831	3.30 3.46 3.62 3.78 3.94 4.10	2.722 2.890 3.040 3.207 3.357 3.525	bottom diameters and caliper diameters should Tolerances on outside diameters are not critical.	66 67 68 69 70 71 72	10.667 10.826 10.986 11.145 11.304 11.463	10.96 11.12 11.27 11.43 11.59 11.75	10.358 10.520 10.676 10.839 10.995	meters are not	115 116 117 118 119	18.305 18.464 18.623 18.783 18.942 19.101 19.260	18.60 18.76 18.92 19.08 19.24 19.39	17.997 18.158 18.315 18.477 18.634 18.795	bottom diameters and caliper diameters should I Tolerances on outside diameters are not critical.
24 25 26 27 28 29	3.989 4.148 4.307 4.466 4.625 4.783	4.26 4.42 4.58 4.74 4.90 5.06	3.675 3.842 3.994 4.160 4.312 4.477	ers and caliper outside diame	72 73 74 75 76 77	11.622 11.781 11.940 12.099 12.258 12.417	11.91 12.07 12.23 12.39 12.55 12.71	11.313 11.475 11.631 11.793 11.949	ers and caliper dia outside diameters	121 122 123 124 125 126	19.419 19.578 19.737 19.897 20.056	19.55 19.71 19.87 20.03 20.19 20.35	18.952 19.113 19.270 19.431 19.589 19.750	ers and caliper outside diame
31 32 33 34 35 36	4.942 5.101 5.260 5.419 5.578 5.737	5.22 5.38 5.54 5.70 5.86 6.02	4.630 4.795 4.948 5.113 5.266 5.431	oottom diamete folerances on	79 80 81 82 83 84	12.577 12.736 12.895 13.054 13.213 13.372	12.87 13.03 13.19 13.34 13.50 13.66	12.268 12.430 12.587 12.748 12.905	i bottom diameters and conforces on outside d	127 128 129 130 131 132	20.215 20.374 20.533 20.692 20.851 21.011	20.51 20.67 20.83 20.99 21.15 21.31	19.907 20.068 20.226 20.386 20.544 20.750	Machining tolerances on bottom diameters Tolerances on out
37 38 39 40 41 42	5.896 6.055 6.214 6.373 6.532 6.691	6.18 6.33 6.49 6.65 6.81 6.97	5.585 5.749 5.903 6.067 6.221 6.385	Machining tolerances on b T	85 86 87 88 89 90	13.531 13.690 13.849 14.008 14.168	13.82 13.98 14.14 14.30 14.46 14.62	13.223 13.384 13.541 13.702 13.860 14.021	Machining tolerances on b T	132 133 134 135 136 137 138 139	21.170 21.329 21.488 21.647 21.806 21.965	21.46 21.62 21.78 21.94 22.10 22.26	20.862 21.023 21.180 21.341 21.499 21.659 21.817	olerances on b
43 44 45 46 47 48	6.850 7.009 7.168 7.327 7.486 7.645	7.13 7.29 7.45 7.61 7.77 7.93	6.540 6.703 6.858 7.021 7.176 7.339	Machining to	91 92 93 94 95 96	14.486 14.645 14.804 14.963 15.122 15.281	14.78 14.94 15.10 15.26 15.41 15.57	14.178 14.339 14.496 14.657 14.814 14.975	Machining to	140 141 142 143 144	22.124 22.284 22.443 22.602 22.761 22.920	22.42 22.58 22.74 22.90 23.06 23.22	21.978 22.135 22.296 22.454 22.614	Machining to
49 50 51 52 53	7.804 7.963 8.122 8.281 8.440	8.09 8.25 8.41 8.57 8.73	7.494 7.657 7.812 7.975 8.130		97 98 99 100 101	15.440 15.600 15.759 15.918 16.077	15.73 15.89 16.05 16.21 16.37	15.132 15.294 15.451 15.612 15.769		145 146 147 148 149	22.920 23.079 23.238 23.398 23.557 23.716	23.37 23.53 23.69 23.85 24.01	22.772 22.932 23.090 23.251 23.409	

Odd tooth "bottom diameters" equal pitch minus .312".

Sprocket Diameters - U.S.A. Std. No. 50 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 111 12 13 14 15 16 17 18 20 21 22 23 24 25 27 28 29 30 31 33 34 40 41 42 43 44 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	1.250 1.441 1.633 1.827 2.023 2.219 2.415 2.612 2.809 3.006 3.204 3.599 3.797 3.995 4.194 4.392 4.590 4.788 4.987 5.185 5.384 5.582 5.781 6.778 6.376 6.775 6.775 6.775 7.767 7.767 7.766 8.165 8.363 8.562 8.761 8.960 9.159 9.357 9.556 9.755 9.954 10.153 10.550	1.46 1.67 1.88 2.09 2.50 2.71 2.91 3.11 3.32 3.52 3.72 3.92 4.12 4.32 4.72 4.92 5.12 5.32 5.52 5.72 6.12 6.32 6.52 6.72 6.92 7.12 7.52 7.72 7.92 8.32 8.72 8.91 9.51 9.51 9.51 9.51 9.51 9.51 10.51 10.51 10.51	0.850 1.004 1.233 1.399 1.623 1.796 2.015 2.193 2.409 2.589 2.804 2.987 3.199 2.589 2.804 2.987 3.199 4.388 4.577 4.785 4.975 5.372 5.579 5.976 6.168 6.374 6.963 7.169 7.361 7.566 7.769	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	54 556 57 58 59 601 623 645 666 67 68 69 70 71 73 74 75 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91 92 93 94 95 96 97 99 91	10.749 10.948 11.147 11.346 11.544 11.743 11.942 12.141 12.340 12.539 12.738 13.931 13.135 13.732 13.931 14.130 14.329 14.527 14.726 14.925 15.124 15.323 15.522 15.721 15.920 16.118 16.317 16.516 16.715 16.914 17.710 17.909 18.106 18.505 18.704 18.903 19.102 19.301 19.500 19.699 19.898 19.898	11.11 11.31 11.50 11.70 12.10 12.30 12.70 12.90 13.30 13.50 13.89 14.29 14.69 14.69 15.69 15.69 15.69 15.69 15.69 15.69 15.69 15.69 15.88 16.88 16.88 16.88 17.28 17.49 17.40 17.40	10.349 10.544 10.747 10.942 11.144 11.339 11.542 11.737 11.940 12.135 12.338 12.532 12.735 12.930 13.133 13.228 13.531 13.726 13.929 14.124 14.920 15.318 15.520 15.716 15.917 16.315 17.404 17.906 18.304 18	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	20.295 20.494 20.693 20.892 21.091 21.290 21.488 21.688 21.887 22.086 22.285 22.484 22.683 22.881 23.080 23.279 23.478 24.075 24.273 24.472 24.671 24.870 25.268 25.4666 25.865 26.262 26.461 26.660 25.865 27.655 27.456 27.655 27.456 27.655 27.854 28.053 28.252 28.451 28.650 28.849 29.247 29.446	20.66 20.86 21.06 21.26 21.26 21.46 21.66 21.86 22.45 22.45 22.45 22.85 23.05 23.25 23.45 24.44 24.64 24.84 25.04 25.24 25.64 25.85 23.25 23.25 23.85 23.05 23.25 23.85 23.85 23.95 23.85 23.95 23.85 23.95 23.85 23.95 23.85 23.85 23.85 23.85 23.85 24.94 24.84 25.94 25.64 25.84 25.64 25.84 25.70 326.83 27.73 26.83 27.73 27.82 28.82 27.82 28.82 29.92 28.82 29.92 29.82 29.81 30.01	19.895 20.092 20.293 20.490 20.691 20.888 21.089 21.286 21.487 21.684 21.885 22.082 22.283 22.479 22.680 22.877 23.078 23.672 23.672 23.476 23.672 23.476 23.672 25.264 25.661 25.862 26.059 26.260 26.457 26.658 27.056 27.253 27.454 27.651 27.454 27.852 28.049 28.250 28.447 28.648 28.845 29.046	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.

Odd tooth "bottom diameters" equal pitch minus .400".

Sprocket Information

Sprocket Diameters - U.S.A. Std. No. 60 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 11 12 13	1.500 1.729 1.960 2.193 2.427 2.662 2.898	1.75 2.01 2.26 2.51 2.76 3.00 3.25 3.49	1.031 1.217 1.491 1.691 1.958 2.166 2.429	should be in the minus direction. critical.	54 55 56 57 58 59 60	12.899 13.137 13.376 13.615 13.853 14.092 14.331	13.33 13.57 13.81 14.04 14.28 14.52 14.76	12.430 12.663 12.907 13.141 13.385 13.618 13.862	minus direction.	102 103 104 105 106 107 108 109	24.354 24.593 24.832 25.071 25.309 25.548 25.787	24.79 25.03 25.27 25.51 25.75 25.99 26.23	23.885 24.121 24.363 24.599 24.840 25.076 25.318	bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.
13 14 15 16 17 18	3.134 3.371 3.607 3.844 4.082 4.319 4.557	3.74 3.98 4.22 4.46 4.70 4.95	2.642 2.902 3.119 3.376 3.595 3.850 4.072	should be in the critical.	61 62 63 64 65 66 67	14.569 14.808 15.046 15.285 15.524 15.762 16.001	15.00 15.24 15.48 15.72 15.96 16.19 16.43	14.096 14.339 14.573 14.816 15.050 15.293 15.528	should be in the critical.	109 110 111 112 113 114 115	26.025 26.264 26.503 26.742 26.980 27.219 27.458	26.46 26.70 26.94 27.18 27.42 27.66 27.90	25.553 25.795 26.031 26.273 26.508 26.750 26.986	should be in the critical.
20 21 22 23 24 25 26	4.794 5.032 5.270 5.508 5.746 5.984	5.19 5.43 5.67 5.91 6.15 6.39	4.326 4.549 4.801 5.026 5.277 5.503	per diameters s meters are not o	68 69 70 71 72 73 74	16.240 16.478 16.717 16.956 17.194 17.433	16.67 16.91 17.15 17.39 17.63 17.87	15.771 16.005 16.248 16.483 16.725 16.960	caliper diameters s diameters are not o	116 117 118 119 120 121	27.697 27.936 28.174 28.413 28.651 28.889	28.14 28.38 28.61 28.85 29.09 29.33	27.228 27.464 27.705 27.941 28.182 28.418	per diameters s meters are not o
27 28 29 30 31 32	6.222 6.460 6.699 6.937 7.175 7.413 7.652	6.63 6.87 7.11 7.35 7.59 7.83 8.07	5.753 5.981 6.230 6.458 6.706 6.935 7.183	bottom diameters and caliper diameters Tolerances on outside diameters are not	75 76 77 78 79 80	17.671 17.910 18.149 18.387 18.626 18.865 19.103	18.11 18.34 18.58 18.82 19.06 19.30 19.54	17.203 17.437 17.680 17.914 18.157 18.392 18.635	and	122 123 124 125 126 127 128	29.128 29.367 29.606 29.845 30.083 30.322 30.561	29.57 29.81 30.05 30.29 30.52 30.76 31.00	28.659 28.895 29.137 29.373 29.614 29.851 30.092	meters and cali on outside diar
33 34 35 36 37 38 39	7.890 8.129 8.367 8.605 8.844 9.082 9.321	8.30 8.54 8.78 9.02 9.26 9.50 9.74	7.412 7.660 7.890 8.137 8.367 8.613 8.845		81 82 83 84 85 86 87	19.342 19.581 19.819 20.058 20.297 20.536 20.774	19.78 20.02 20.26 20.49 20.73 20.97 21.21	18.870 19.112 19.347 19.589 19.825 20.067 20.302	on bottom diameters Tolerances on out:	129 130 131 132 133 134 135	30.800 31.038 31.277 31.516 31.754 31.993 32.232	31.24 31.48 31.72 31.96 32.20 32.44 32.67	30.328 30.569 30.806 31.047 31.283 31.524 31.761	on bottom dia Tolerances
40 41 42 43 44 45	9.559 9.798 10.036 10.275 10.513 10.752	9.98 10.22 10.46 10.70 10.94 11.18	9.090 9.322 9.567 9.799 10.044 10.276	Machining tolerances on	88 89 90 91 92 93	21.013 21.252 21.490 21.729 21.968 22.206	21.45 21.69 21.93 22.17 22.41 22.64	20.544 20.780 21.021 21.257 21.499 21.734	Machining tolerances on	136 137 138 139 140	32.471 32.709 32.948 33.187 33.425 33.664	32.91 33.15 33.39 33.63 33.87 34.11	32.002 32.238 32.479 32.716 32.956 33.193	Machining tolerances on
46 47 48 49 50 51	10.990 11.229 11.467 11.706 11.945 12.183 12.422	11.42 11.65 11.89 12.13 12.37 12.61 12.85	10.522 10.754 10.999 11.231 11.476 11.708 11.953	Machi	94 95 96 97 98 99	22.445 22.683 22.922 23.161 23.400 23.638 23.877	22.88 23.12 23.36 23.60 23.84 24.08 24.32	21.976 22.211 22.453 22.689 22.931 23.166 23.408	Machi	142 143 144 145 146 147 148	33.903 34.142 34.380 34.619 34.858 35.096 35.335	34.35 34.58 34.82 35.06 35.30 35.54 35.78	33.434 33.670 33.911 34.148 34.389 34.625 34.866	Machi
52 53	12.422	13.09	12.186		100	23.877	24.32 24.55	23.408 23.644		148 149	35.335 35.574	35.78 36.02	35.103	

Odd tooth "bottom diameters" equal pitch minus .469".

Sprocket Diameters - U.S.A. Std. No. 80 Roller Chain

Obiook	Ct Diai	1101013	- OIOIAI	Otal II	0. 00 11	Olici Ol	iaiii							
No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 38 39 40 40 41 42 43 44 45 46 47 48 49 49 40 40 40 40 40 40 40 40 40 40	2.000 2.305 2.613 2.924 3.236 3.550 3.864 4.179 4.4810 5.126 6.076 6.392 6.710 7.027 7.344 7.661 7.979 8.296 8.614 8.931 9.249 9.567 9.985 10.202 10.520 10.520 10.520 11.156 11.474 11.792 12.110 12.428 12.746 13.382 13.700 14.018 14.036 14.052 15.290 15.608	2.33 2.68 3.01 3.35 4.66 4.98 5.30 5.63 5.95 6.27 6.59 6.91 7.58 8.20 8.52 8.84 9.16 9.48 9.10 10.43 10.43 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.07 11.03 11.07 1	1.375 1.622 1.988 2.254 2.611 2.888 3.239 3.523 3.869 4.158 4.501 4.794 5.134 5.134 5.430 5.767 6.066 6.402 6.702 7.036 7.338 7.671 7.974 8.306 8.611 8.942 9.247 9.577 9.883 10.213 10.520 10.849 11.156 11.485 11.792 12.121 12.429 12.757 13.065 13.393 13.702 14.029 14.338 14.0665 14.975 15.301 15.611 15.937 16.248	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	54 556 577 588 599 601 622 633 644 665 666 677 688 699 701 772 773 774 775 777 778 779 881 882 883 884 887 888 889 991 992 993 994 995 995 997 998 999 1000 1001 100	17.198 17.517 17.835 18.153 18.153 18.471 18.789 19.107 19.426 19.744 20.062 20.380 21.016 21.335 21.971 22.289 22.2697 22.3244 23.562 23.244 23.562 24.198 24.198 24.517 24.835 25.471 25.790 26.108 26.744 27.063 27.381 27.699 28.017 28.335 28.927 30.245 30.563 30.882 29.927 30.245 30.563 30.882 31.200 31.518 31.836 32.155	17.77 18.09 18.41 18.73 19.04 19.36 19.68 20.00 20.32 20.64 20.96 21.27 21.59 22.23 22.55 22.87 23.19 23.50 23.82 24.14 24.46 24.78 25.10 25.42 25.73 26.05 26.37 26.69 27.96 28.28 28.60 27.96 28.28 28.60 29.24 29.56 29.27 30.19 30.51 30.83 31.15 31.47 32.10 32.44 32.74	16.573 16.884 17.210 17.521 17.846 18.158 18.482 18.794 19.119 19.431 19.752 20.067 20.391 20.704 21.028 21.340 21.664 21.977 22.301 22.613 22.937 23.250 23.573 23.887 24.210 24.523 24.846 25.160 25.483 26.756 26.119 26.433 26.756 27.706 28.029 28.343 28.665 27.770 27.392 28.616 29.938 30.252 29.616 29.938 30.252 30.573 30.889 31.211 31.526	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123 124 125 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	32.473 32.791 33.109 33.428 33.746 34.064 34.382 34.701 35.019 35.337 35.655 35.974 36.292 36.610 36.929 37.247 37.565 37.883 38.202 38.520 38.8293 40.111 40.430 40.748 41.066 41.384 41.703 42.021 42.339 42.657 42.976 43.612 43.931 44.249 44.567 44.885 44.885 44.885 44.885 46.477 46.795 46.795 47.432	33.06 33.38 33.69 34.01 34.33 34.65 34.97 35.29 35.61 35.92 36.24 36.56 36.88 37.20 37.52 37.83 38.15 38.79 39.74 40.06 40.38 40.70 41.02 41.34 41.65 41.97 42.61 42.61 42.61 42.61 43.88 44.52 44.52 44.52 44.52 44.52 44.52 44.52 47.07 47.38	31.848 32.162 32.484 32.799 33.121 33.435 33.757 34.072 34.394 34.709 35.345 35.3667 35.382 36.304 36.618 36.940 37.255 37.577 37.892 38.213 38.528 39.165 39.165 39.466 39.401 40.438 40.438 40.458 40.458 41.771 42.032 42.348 42.669 41.771 42.032 42.348 43.306 43.621 43.942 44.258 44.559 44.579 44.894 45.215 45.531 45.852 46.167 46.804	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.

Odd tooth "bottom diameters" equal pitch minus .625".

Sprocket Information

Sprocket Diameters - U.S.A. Std. No. 100 Roller Chain

317-638-6431 1-800-US-CHAIN

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10	2.500 2.881 3.266 3.655 4.045 4.437	2.92 3.35 3.77 4.18 4.60 5.01	1.750 2.059 2.516 2.850 3.295 3.642	inus direction.	54 55 56 57 58 59	21.498 21.896 22.293 22.691 23.089 23.486	22.21 22.61 23.01 23.41 23.81 24.20	20.748 21.137 21.543 21.932 22.339 22.728	in the minus direction.	102 103 104 105 106 107	40.591 40.989 41.386 41.784 42.182 42.580	41.32 41.72 42.12 42.52 42.91 43.31	39.841 40.234 40.636 41.030 41.432 41.825	be in the minus direction.
12 13 14 15 16 17	4.830 5.223 5.617 6.012 6.407 6.803	5.42 5.82 6.23 6.63 7.03 7.44	4.080 4.435 4.867 5.229 5.657 6.024	should be in the minus direction. critical.	60 61 62 63 64 65	23.884 24.282 24.680 25.077 25.475 25.873	24.60 25.00 25.40 25.80 26.19 26.59	23.134 23.524 23.930 24.320 24.725 25.115	96	108 109 110 111 112 113	42.978 43.376 43.774 44.171 44.569 44.967	43.71 44.11 44.51 44.90 45.30 45.70	42.228 42.621 43.024 43.417 43.819 44.213	ld be in the mi
18 19 20 21 22 23	7.198 7.595 7.991 8.387 8.783 9.180	7.84 8.24 8.64 9.04 9.44 9.84	6.448 6.819 7.241 7.614 8.033 8.409	caliper diameters should diameters are not critical	66 67 68 69 70 71	26.271 26.668 27.066 27.464 27.862 28.259	26.99 27.39 27.79 28.19 28.58 28.98	25.521 25.911 26.316 26.707 27.112 27.502	caliper diameters should I diameters are not critical.	114 115 116 117 118 119	45.365 45.763 46.161 46.559 46.957 47.354	46.10 46.50 46.89 47.29 47.69 48.09	44.615 45.009 45.411 45.804 46.207 46.600	bottom diameters and caliper diameters should I Tolerances on outside diameters are not critical.
24 25 26 27 28 29	9.577 9.973 10.370 10.767 11.164 11.561	10.25 10.65 11.05 11.44 11.84 12.24	8.827 9.204 9.620 9.999 10.414 10.795	and caliper d side diameter	72 73 74 75 76 77	28.657 29.055 29.453 29.850 30.248 30.646	29.38 29.78 30.18 30.57 30.97 31.37	27.907 28.298 28.703 29.093 29.498 29.889		120 121 122 123 124 125	47.752 48.149 48.547 48.945 49.343 49.741	48.49 48.88 49.28 49.68 50.08 50.48	47.002 47.395 47.797 48.191 48.593 48.987	and caliper d side diameter
30 31 32 33 34 35	11.958 12.356 12.753 13.150 13.547 13.945	12.64 13.04 13.44 13.84 14.24 14.64	11.208 11.590 12.003 12.385 12.797 13.181	oottom diameters and Tolerances on outside	78 79 80 81 82 83	31.044 31.441 31.839 32.237 32.635 33.033	31.77 32.17 32.57 32.96 33.36 33.76	30.294 30.685 31.089 31.481 31.885 32.277	oottom diameters and Tolerances on outside	126 127 128 129 130 131	50.139 50.537 50.935 51.333 51.730 52.128	50.87 51.27 51.67 52.07 52.47 52.86	49.389 49.783 50.185 50.579 50.980 51.375	om diameters rances on out
36 37 38 39 40 41	14.342 14.740 15.137 15.534 15.932 16.329	15.04 15.44 15.84 16.23 16.63 17.03	13.592 13.976 14.387 14.772 15.182 15.568	ances on botte Tole	84 85 86 87 88 89	33.430 33.828 34.226 34.624 35.021 35.419	34.16 34.56 34.95 35.35 35.75 36.15	32.680 33.072 33.476 33.868 34.271 34.663	ances on botte Tole	132 133 134 135 136 137	52.526 52.924 53.322 53.720 54.118 54.515	53.26 53.66 54.06 54.46 54.85 55.25	51.776 52.170 52.572 52.966 53.368 53.762	ances on bott
42 43 44 45 46 47	16.727 17.124 17.522 17.920 18.317 18.715	17.43 17.83 18.23 18.63 19.02 19.42	15.977 16.363 16.772 17.159 17.567 17.954	Machining tolerances on bottom diameters and Tolerances on outside	90 91 92 93 94 95	35.817 36.215 36.612 37.010 37.408 37.806	36.55 36.94 37.34 37.74 38.14	35.067 35.459 35.862 36.255 36.658 37.050	Machining tolerances on bottom diameters and Tolerances on outside	138 139 140 141 142 143	54.913 55.311 55.709 56.107 56.505 56.903	55.65 56.05 56.45 56.84 57.24 57.64	54.163 54.558 54.959 55.353 55.755 56.149	Machining tolerances on bottom diameters and Tolerances on outside
48 49 50 51 52 53	19.112 19.510 19.908 20.305 20.703 21.100	19.82 20.22 20.62 21.02 21.42 21.81	18.362 18.750 19.158 19.545 19.953 20.341	Ν	96 97 98 99 100 101	38.203 38.601 38.999 39.397 39.795 40.193	38.93 39.33 39.73 40.13 40.53 40.92	37.453 37.846 38.249 38.642 39.045 39.438	Ν	144 145 146 147 148 149	57.300 57.698 58.096 58.494 58.892 59.290	58.04 58.44 58.83 59.23 59.63 60.03	56.550 56.945 57.346 57.741 58.142 58.537	2

Odd tooth "bottom diameters" equal pitch minus .750".

Sprocket Diameters - U.S.A. Std. No. 120 Roller Chain

Opioon	Ct Diai		- 0.5.A.	<u> </u>	VI 120	HOHEI V	JIIWIII							
No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 11	3.000 3.457 3.920 4.386 4.854 5.324	3.50 4.02 4.52 5.02 5.52 6.01	2.125 2.495 3.045 3.444 3.979 4.395	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	54 55 56 57 58 59	25.798 26.275 26.752 27.229 27.707 28.184	26.65 27.13 27.61 28.09 28.57 29.04	24.923 25.389 25.877 26.344 26.832 27.299	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	102 103 104 105 106 107	48.709 49.186 49.664 50.410 50.619 51.096	49.59 50.06 50.54 51.02 51.50 51.97	47.834 48.305 48.789 49.260 49.744 50.215	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.
12 13 14 15 16 17	5.796 6.268 6.741 7.215 7.689 8.163	6.50 6.99 7.47 7.96 8.44 8.92	4.921 5.347 5.866 6.300 6.814 7.253	uld be in the m cal.	60 61 62 63 64 65	28.661 29.138 29.616 30.093 30.570 31.047	28.09 28.57 29.04 29.52 30.00 30.48 30.96 31.43 31.91 32.39 32.87 33.34 33.82 34.30 34.78 35.26 35.73 36.21 36.69 37.17	27.786 28.263 28.741 29.208 29.695 30.163	uld be in the m cal.	108 109 110 111 111 112 113	50.410 50.619 51.096 51.573 52.051 52.528 53.005 53.483 54.915 55.393 55.870 56.347 56.824 57.778 58.256 58.734 59.212	52.45 52.93 53.41 53.88 54.36 54.84 55.32 55.80 56.27 56.75 57.23 57.23 57.23 57.23 59.14 59.62 60.09 60.57	50.698 51.169 51.653 52.124	uld be in the m cal.
18 19 20 21 22 23	8.638 9.113 9.589 10.064 10.540 11.016	9.41 9.89 10.37 10.85 11.33 11.81	7.763 8.207 8.714 9.161 9.665 10.115	iameters shous s are not critic	66 67 68 69 70 71	31.525 32.002 32.479 32.957 33.434 33.911	32.39 32.87 33.34 33.82 34.30 34.78	30.650 31.118 31.604 32.073 32.559 33.028	iameters shous s are not critic	113 114 115 116 117 118 119	54.438 54.915 55.393 55.870 56.347 56.824	55.32 55.80 56.27 56.75 57.23 57.71	53.080 53.563 54.034 54.518 54.989 55.472 55.944	iameters shous s are not critic
24 25 26 27 28 29	11.492 11.968 12.444 12.921 13.397 13.874	12.29 12.77 13.25 13.73 14.21 14.69	10.617 11.070 11.569 12.024 12.522 12.978	and caliper d tside diamete	68 69 70 71 72 73 74 75 76 77 78 79 80	34.388 34.866 35.343 35.820 36.298 36.775	35.26 35.73 36.21 36.69 37.17 37.64	33.513 33.983 34.468 34.937 35.423 35.892	and caliper d tside diameter	118 119 120 121 122 123 124 125 126 127 128 129 130	59 690	58.18 58.66 59.14 59.62 60.09 60.57	55.944 56.426 56.899 57.381 57.854 58.337 58.809 59.292 59.765 60.247 60.720	and caliper d tside diamete
30 31 32 33 34 35	14.350 14.827 15.303 15.780 16.257 16.734	15.17 15.65 16.13 16.61 17.09 17.57	12.024 12.522 12.978 13.475 13.933 14.428 14.887 15.382 15.842	tom diameters grances on our	78 79 80 81 82 83 84	37.252 37.730 38.207 38.684 39.162 39.639	38.12 38.60 39.08 39.56 40.03 40.51	36.377 36.847 37.332 37.802 38.287 38.757	tom diameters rrances on ou	126 127 128 129 130 131	60.167 60.644 61.122 61.599 62.076 62.554	61.05 61.53 62.00 62.48 62.96 63.44	61.201 61.674	tom diameters erances on ou
36 37 38 39 40 41	17.211 17.687 18.164 18.641 19.118 19.595	18.05 18.52 19.00 19.48 19.96 20.44	16.796 16.796 17.289 17.751 18.243	ances on bott Tole	85 86 87 88 89	40.116 40.594 41.071 41.548 42.026 42.503	37.64 38.12 38.60 39.08 39.56 40.03 40.51 40.99 41.47 41.94 42.42 42.90 43.38 43.85 44.83 44.81	39.241 39.712 40.196 40.666 41.151 41.621	ances on bott Tole	132 133 134 135 136 137	63.031 63.509 63.986 64.464 64.941 65.418	63.91 64.39 64.87 65.35 65.82 66.30	62.156 62.629 63.111 63.584 64.066 64.539	ances on bott Tole
42 43 44 45 46 47	20.072 20.549 21.026 21.503 21.980 22.458	20.92 21.39 21.87 22.35 22.83 23.31	19.197 19.661 20.151 20.615 21.105	fachining toler	90 91 92 93 94 95	42.981 43.458 43.935 44.412 44.889 45.367	45.29 45.77 46.24	42.106 42.576 43.060 43.530 44.014 44.485	fachining toler	138 139 140 141 142 143	65.896 66.373 66.851 67.328 67.806 68.283	66.78 67.26 67.73 68.21 68.69 69.17	65.021 65.494 65.976 66.449 66.931 67.404	fachining toler
48 49 50 51 52 53	22.935 23.412 23.889 24.366 24.843 25.320	23.79 24.26 24.74 25.22 25.70 26.18	22.060 22.525 23.014 23.479 23.968 24.434	2	96 97 98 99 100	45.844 46.321 46.799 47.277 47.754 48.231	46.72 47.20 47.68 48.15 48.63 49.11	44.969 45.440 45.924 46.395 46.879 47.350	2	144 145 146 147 148 149	68.760 69.238 69.715 70.193 70.670 71.148	69.64 70.12 70.60 71.08 71.56 72.03	67.885 68.359 68.840 69.314 69.795 70.269	≥

Odd tooth "bottom diameters" equal pitch minus .875".

Sprocket Information

Sprocket Diameters - U.S.A. Std. No. 140 Roller Chain

Odd tooth "bottom diameters" equal pitch minus 1.000".

Sprocket Diameters - U.S.A. Std. No. 160 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 11	4.000 4.610 5.226 5.848 6.472 7.099	4.66 5.35 6.03 6.70 7.36 8.01	2.875 3.369 4.101 4.634 5.347 5.902	inus direction.	54 55 56 57 58 59	34.397 35.033 35.669 36.306 36.942 37.578	35.54 36.18 36.81 37.45 38.09 38.73	33.272 33.894 34.544 35.167 35.817 36.440	inus direction.	102 103 104 105 106 107	64.945 65.582 66.218 66.855 67.491 68.128	66.11 66.75 67.39 68.03 68.66 69.30	63.820 64.449 65.093 65.722 66.366 66.995	inus direction.
12 13 14 15 16 17	7.727 8.357 8.988 9.620 10.252 10.885	8.66 9.31 9.96 10.61 11.26 11.90	6.602 7.171 7.863 8.442 9.127 9.713	should be in the minus direction. critical.	60 61 62 63 64 65	38.215 38.851 39.487 40.124 40.760 41.396	39.36 40.00 40.64 41.27 41.91 42.55	37.090 37.713 38.362 38.986 39.635 40.259	caliper diameters should be in the minus direction. diameters are not critical.	108 109 110 111 112 113	68.765 69.401 70.038 70.674 71.311 71.948	69.94 70.57 71.21 71.85 72.48 73.12	67.638 68.268 68.913 69.541 70.186 71.815	Machining tolerances on bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.
18 19 20 21 22 23	11.518 12.151 12.785 13.419 14.053 14.688	12.54 13.19 13.83 14.47 15.11 15.75	10.393 10.985 11.660 12.256 12.928 13.528		66 67 68 69 70 71	42.033 42.669 43.306 43.942 44.578 45.215	43.19 43.82 44.46 45.10 45.73 46.37	40.908 41.532 42.181 42.805 43.453 44.078	iameters should t s are not critical.	114 115 116 117 118 119	72.585 73.221 73.858 74.494 75.130 75.767	73.76 74.39 75.03 75.67 76.30 76.94	71.460 72.089 72.733 73.362 74.005 74.635	iameters shou s are not critic
24 25 26 27 28 29	15.323 15.958 16.593 17.228 17.863 18.498	16.39 17.03 17.67 18.31 18.95 19.59	14.198 14.801 15.468 16.073 16.738 17.346	and caliper diameters side diameters are not	72 73 74 75 76 77	45.851 46.488 47.124 47.760 48.397 49.033	47.01 47.64 48.28 48.92 49.56 50.19	44.726 45.352 45.999 46.625 47.272 47.898	and caliper dia side diameters	120 121 122 123 124 125	76.403 77.039 77.676 78.313 78.950 79.587	77.58 78.21 78.85 79.49 80.12 80.76	75.278 75.908 76.551 77.181 77.825 78.455	and caliper d
30 31 32 33 34 35	19.134 19.769 20.405 21.040 21.676 22.312	20.23 20.87 21.51 22.15 22.78 23.42	18.009 18.619 19.280 19.892 20.551 21.164	bottom diameters and Tolerances on outside	78 79 80 81 82 83	49.670 50.306 50.943 51.579 52.216 52.852	50.83 51.47 52.10 52.74 53.38 54.01	48.545 49.171 49.818 50.444 51.091 51.717	bottom diameters and Tolerances on outside	126 127 128 129 130 131	80.222 80.859 81.495 82.132 82.769 83.405	81.40 82.03 82.67 83.31 83.94 84.58	79.097 79.728 80.370 81.001 81.644 82.274	om diameters rances on out
36 37 38 39 40 41	22.947 23.583 24.219 24.855 25.491 26.127	24.06 24.70 25.34 25.98 26.61 27.25	21.822 22.437 23.094 23.710 24.366 24.983		84 85 86 87 88 89	53.489 54.125 54.761 55.398 56.034 56.671	54.65 55.29 55.92 56.56 57.20 57.84	52.364 52.991 53.637 54.264 54.909 55.538	ances on bott Tole	132 133 134 135 136 137	84.042 84.678 85.315 85.951 86.588 87.225	85.22 85.85 86.49 87.13 87.76 88.40	82.917 83.547 84.190 84.821 85.463 86.094	ances on bott Tole
42 43 44 45 46 47	26.763 27.399 28.035 28.671 29.307 29.943	27.89 28.53 29.16 29.80 30.44 31.08	25.638 26.256 26.910 27.529 28.182 28.802 29.455	Machining tolerances on	90 91 92 93 94 95	57.307 57.944 58.580 59.216 59.853 60.489	58.47 59.11 59.75 60.38 61.02 61.66	56.182 56.810 57.455 58.083 58.728 59.356	Machining tolerances on bottom diameters and Tolerances on outside	138 139 140 141 142 143	87.861 88.498 89.134 89.771 90.407 91.044	89.04 89.68 90.31 90.95 91.59 92.22	86.736 87.367 88.009 88.640 89.282 89.913	lachining toler
48 49 50 51 52 53	30.580 31.216 31.852 32.488 33.124 33.761	31.71 32.35 32.99 33.63 34.26 34.90	29.455 30.075 30.727 31.348 31.999 32.621	Σ	96 97 98 99 100	61.126 61.762 62.399 63.035 63.672 64.309	62.29 62.93 63.57 64.20 64.84 65.48	60.001 60.629 61.274 61.903 62.547 63.176	W W	144 145 146 147 148 149	91.680 92.317 92.954 93.590 94.227 94.863	92.86 93.50 94.13 94.77 95.41 96.04	90.555 91.187 91.829 92.460 93.102 93.733	N N

Sprocket Information

Sprocket Diameters - U.S.A. Std. No. 180 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	direction.	No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	direction.	No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	direction.
5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32	3.828 4.500 5.186 5.879 7.281 7.986 8.693 9.402 10.112 10.822 11.533 12.245 12.957 13.670 14.383 15.096 15.810 16.524 17.238 17.952 18.666 19.381 20.096 20.810 21.525 22.240	4.45 5.25 6.02 6.78 7.53 8.28 9.01 9.75 10.48 11.21 11.93 12.66 13.39 14.11 14.83 15.56 16.28 17.72 18.44 19.88 20.60 21.32 22.76 23.48 24.19	2,235 3,094 3,650 4,473 5,073 5,875 6,499 7,287 7,927 8,706 9,357 10,127 10,787 11,251 12,217 12,977 13,648 14,404 15,079 15,832 16,511 17,260 17,942 18,690 19,374 20,119 20,806 21,549	bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	32.255 32.971 33.686 34.402 35.118 36.549 37.265 37.981 38.696 39.412 40.128 40.844 41.560 42.276 42.276 42.991 43.707 44.423 45.139 45.855 46.571 47.287 48.003 48.719 49.435 50.151 50.867 51.583	33.53 34.24 34.96 35.68 36.40 37.11 37.83 38.55 39.57 39.98 40.70 42.13 42.13 42.13 42.13 42.13 47.15 43.57 44.71 45.72 46.43 47.15 47.87 48.58 49.30 50.02 50.73 51.45 52.17 52.18	30.830 31.565 32.262 32.996 33.694 34.428 35.126 35.859 36.558 37.290 37.790 38.722 39.422 40.154 40.855 41.585 41.585 42.287 43.017 43.719 44.449 45.151 45.881 46.584 47.313 48.016 48.745 49.448 50.177	r bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.	85 86 87 88 89 90 91 92 93 94 95 96 97 97 101 102 103 104 105 106 107 108 109 110	60.891 61.607 62.323 63.039 63.755 64.471 65.187 65.903 66.619 67.335 68.051 68.767 69.483 70.199 70.916 71.631 72.348 73.064 73.780 74.496 75.928 76.644 77.360 78.076 78.792 79.508 80.225	62.20 62.92 63.63 64.35 65.07 65.78 66.50 67.21 67.93 68.65 70.08 70.80 71.51 72.23 72.23 72.95 73.66 74.38 75.10 76.53 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25 77.25	59, 474 60, 201 60, 201 60, 207 61, 633 62, 339 63, 065 63, 771 65, 203 66, 5203 66, 536 67, 361 68, 068 68, 793 70, 225 70, 933 71, 658 72, 365 73, 798 74, 522 75, 230 75, 954 76, 662 77, 386 78, 819	bottom diameters and caliper diameters should be in the minus direction. Tolerances on outside diameters are not critical.
33 34 35 36 37 38 39 40	23.670 24.385 25.101 25.816 26.531 27.246 27.962 28.677	24.91 25.63 26.35 27.07 27.79 28.50 29.22 29.94	22.237 22.979 23.669 24.410 25.101 25.840 26.533 27.271	Machining tolerances on	73 74 75 76 77 78 79 80	52.299 53.015 53.730 54.446 55.162 55.879 56.594 57.310	53.60 54.32 55.03 55.75 56.47 57.18 57.90 58.62	50.880 51.609 52.313 53.040 53.745 54.473 55.177 55.904	Machining tolerances on	113 114 115 116 117 118 119 120	80.941 81.657 82.373 83.089 83.805 84.521 85.237 85.953	82.26 82.98 83.69 84.41 85.12 85.84 86.56 87.27	79.527 80.251 80.959 81.683 82.392 83.115 83.824 84.547	Machining tolerances on
41 42 43 44	29.393 30.108 30.824 31.539	30.66 31.37 32.09 32.81	27.965 28.702 29.397 30.133	Machir	81 82 83 84	58.027 58.743 59.459 60.175	59.33 60.05 60.77 61.48	56.610 57.337 58.042 58.769	Machir	121 122 123 124	86.670 87.386 88.102 88.818	87.99 88.71 89.42 90.14	85.256 85.980 86.689 87.412	Machii

Odd tooth "bottom diameters" equal pitch minus 1.406".

Sprocket Diameters - U.S.A. Std. No. 200 Roller Chain

No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth		No. of Teeth	Pitch Diameter	Outside Diameter	Bottom Diam. for Even Teeth Caliper Diam. for Odd Teeth	
6 7 8 9 10 11	5.000 5.762 6.532 7.310 8.090 8.872	5.83 6.69 7.54 8.37 9.20 10.02	3.438 4.055 4.970 5.637 6.528 7.219	should be in the minus direction. critical.	54 55 56 57 58 59	42.995 43.792 44.587 45.382 46.177 46.972	44.42 45.22 46.02 46.81 47.61 48.41	41.433 42.212 43.025 43.802 44.615 45.393	in the minus direction.	102 103 104 105 106 107	81.182 81.977 82.772 83.567 84.365 85.160	82.64 83.44 84.24 85.03 85.83 86.62	79.620 80.406 81.210 81.996 82.803 83.589	inus direction.
12 13 14 15 16	9.660 10.447 11.235 12.025 12.815 13.605	10.83 11.64 12.46 13.26 14.07 14.87	8.098 8.808 9.673 10.397 11.253 11.985	ld be in the m al.	60 61 62 63 64 65	47.767 48.565 49.360 50.155 50.950 51.745	49.20 50.00 50.80 51.59 52.39 53.19	46.205 46.987 47.798 48.577 49.388 50.168	e	108 109 110 111 112 113	85.955 86.752 87.547 88.342 89.137 89.935	87.42 88.22 99.01 89.81 90.60 91.40	84.393 85.181 85.985 86.771 87.575 88.364	ld be in the minus al.
18 19 20 21 22 23	14.397 15.190 15.982 16.775 17.567 18.360	15.68 16.48 17.29 18.09 18.89 19.69	12.835 13.576 14.420 15.166 16.005 16.755		66 67 68 69 70 71	52.540 53.337 54.132 54.927 55.722 56.517	53.98 54.78 55.58 56.37 57.17 57.96	50.978 51.760 52.570 53.351 54.160 54.941	ameters should be s are not critical.	114 115 116 117 118 119	90.730 91.525 92.322 93.117 93.912 94.707	92.20 92.99 93.79 94.58 95.38 96.18	89.168 89.954 90.760 91.547 92.350 93.137	bottom diameters and caliper diameters should I Tolerances on outside diameters are not critical.
24 25 26 27 28 29	19.152 19.947 20.740 21.535 22.330 23.122	20.49 21.29 22.09 22.89 23.69 24.49	17.590 18.346 19.178 19.937 20.768 21.526	and caliper diameters side diameters are not	72 73 74 75 76 77	57.315 58.110 58.905 59.700 60.495 61.292	58.76 59.56 60.35 61.15 61.95 62.74	55.753 56.535 57.343 58.125 58.933 59.717	and caliper diameters side diameters are not	120 121 122 123 124 125	95.502 96.297 97.092 97.890 98.687 99.482	96.97 97.77 98.56 99.36 100.16 100.95	93.940 94.727 95.530 96.320 97.125 97.909	and caliper di side diameters
30 31 32 33 34 35	23.917 24.712 25.505 26.300 27.095 27.890	25.29 26.09 26.88 27.68 28.48 29.28	22.355 23.118 23.943 24.708 25.533 26.300	bottom diameters and Tolerances on outside	78 79 80 81 82 83	62.087 62.882 63.677 64.475 65.270 66.065	63.54 64.33 65.13 65.93 66.72 67.52	60.525 61.308 62.115 62.901 63.708 64.491	bottom diameters and Tolerances on outside	126 127 128 129 130 131	100.278 101.074 101.869 102.665 103.461 104.257	101.75 102.54 103.34 104.14 104.93 105.73	98.716 99.504 100.307 101.095 101.899 102.687	m diameters ances on outs
36 37 38 39 40 41	28.685 29.480 30.275 31.070 31.865 32.660	30.08 30.87 31.67 32.47 33.27 34.06	27.123 27.891 28.713 29.483 30.303 31.074	on	84 85 86 87 88 89	66.860 67.657 68.452 69.247 70.042 70.837	68.32 69.11 69.91 70.70 71.50 72.30	65.298 66.083 66.890 67.674 68.480 69.264	on	132 133 134 135 136 137	105.052 105.848 106.644 107.439 108.235 109.031	106.52 107.32 108.12 108.91 109.71 110.50	103.490 104.278 105.082 105.870 106.673 107.461	uo
42 43 44 45 46 47	33.455 34.250 35.045 35.840 36.635 37.430	34.86 35.66 36.46 37.25 38.05 38.85	31.893 32.665 33.483 34.256 35.073 35.847	Machining tolerances	90 91 92 93 94 95	71.635 72.430 73.225 74.020 74.815 75.612	73.09 73.89 74.68 75.48 76.28 77.07	70.073 70.857 71.663 72.447 73.253 74.040	Machining tolerances	138 139 140 141 142 143	109.827 110.622 111.418 112.214 113.009 113.805	111.30 112.10 112.89 113.69 114.48 115.28	108.265 109.053 109.856 110.644 111.447	Machining tolerances
48 49 50 51 52 53	38.225 39.020 39.815 40.610 41.405 42.200	39.64 40.44 41.24 42.03 42.83 43.63	36.663 37.438 38.253 39.029 39.843 40.619	Mé	96 97 98 99 100	76.407 77.202 77.997 78.795 79.590 80.385	77.87 78.66 79.46 80.26 81.05 81.85	74.040 74.845 75.626 76.435 77.223 78.028 78.813	Ms	144 145 146 147 148 149	114.601 115.396 116.192 116.988 117.784 118.579	116.07 116.87 117.67 118.46 119.26 120.05	113.039 113.827 114.630 115.419 116.222 117.010	M

Odd tooth "bottom diameters" equal pitch minus 1.562".

Important Address and Phone Numbers

Diamond Chain Company:

Mailing: P.O. Box 7045

Indianapolis, IN 46207

317-638-6431 800-872-4246

317-633-2243 (fax)

Shipping: 402 Kentucky Avenue

Indianapolis, ÍN 46225

Service Centers:

Dallas, TX

877-453-9128 (toll free)

214-631-2374 (fax)

Sacramento, CA

877-453-9127 (toll free)

317-633-2243 (fax)

New Castle, UK

44-(0)191-414-8822

44-(0)191-414-8877 (fax)

Brampton, Ontario Canada

905-455-6969

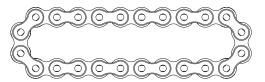
905-455-6061 (fax)

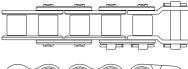
Saltillo, Coah. Mexico

011-(0)52-844-430-2957

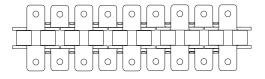
Quantity; catalog number; type; riveted or cottered when optional; and chain length is the basic information needed to order all chain. For multiple strand chain, the construction, press-fit or slip-fit if optional, must be specified. When ordering attachment chain, refer to the attachment chain section of this guide for details on types and spacing of attachments.

Chain-6 pitches long, including connecting link.

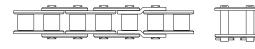




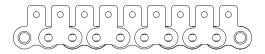
Chain-24 pitches long, riveted endless with no connecting link.



Chain-5 pitches long, including connecting link and one-pitch offset.

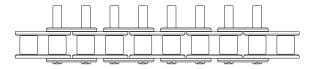


Chain-9 pitches long, with bent attachments, both sides of chain, every pitch.


Chain-7 pitches long, including two-pitch offset and connecting link.



Chain-9 pitches long, with straight attachments, every pitch.



Chain-5 pitches long, roller link each end.

Chain-9 pitches long, with all pins extended.

EXAMPLES:

- 10 #60-2 riveted chains, press-fit center plates, 168 pitches long including connecting link.
- 18 #35 riveted chains, 100 foot reels.
- 23 #60 cottered chains, 56 pitches long including connecting link.
- 6 #50 riveted chains, 57 pitches long including two-pitch offset and connecting link.
- 2 #80 riveted chains, 36 pitches long, with straight attachments, one side of the chain on the pin links at four-pitch spacing, matched as a pair, Class I.

Answers to frequently asked questions:

- Spring clip, slip-fit, connecting links are standard for ASME/ANSI #60 and smaller.
- Cottered, slip-fit, connecting links are standard for ASME/ANSI #80 and larger.
- Double-Pitch Conveyor Roller Chains with over-sized rollers use connecting links for the same chain having standard series rollers. (Example: C2042 chains use connecting links for C2040.)
- DURALUBE® chains use connecting links for Standard Series chains. (#40DL chain uses #40 connecting links.)
- ANSI #140 1-3/4" pitch chain, having 6.857 pitches per foot, makes it impossible to supply an exact length of 10 feet. Therefore, this chain model is supplied in 10.21-foot lengths (70 pitches).
- ANSI #180 2-1/4" pitch chain, having 5.333 pitches per foot, makes it impossible to supply an exact length of 10 feet. Therefore, this chain model is supplied in 10.13-foot lengths (54 pitches).

Standard Packaged Roller Chain Lengths

Non-standard Chains

½ ½

5/8

5%

10

10

10

10

10

2.0

4.3

6.1

6.6

13.0

65 x 1/8

867 x 5/16

148 x 1/4

148 x 5/16

435 x ½

Packaged Diamond roller chains and parts protect the product against damage and dirt, provide the utmost convenience in storage and handling, and maintain the chain and the initial lubricant in factory fresh condition. The contents of each package are clearly identified. In addition to packaged chain, for the user who desires chain supplied to an exact length, Diamond can supply all models cut to any length.

		BO	KES			REEL LENGTHS	1	
ASME/ANSI or Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)	50 Ft. Weight (Lbs.)	100 Ft. Weight (Lbs.)	200 Ft. Weight (Lbs.)	250 Ft. Weight (Lbs.)	500 Ft. Weight (Lbs.)
Single Strar	nd Chain							
Micropitch®	.1475	10	0.4	2.0	_	8.0	_	_
25	1/4	10	1.0	5.4	11.0	_	24.0	57.0
35	3/8	10	2.2	13.0	23.0	_	_	118.0
41	1/2	10	3.0	16.0	29.0	_	_	154.0
40	½ %	10	4.0	22.0	43.0	_	114.0	_
50	5/8	10	7.0	37.0	71.0	146.0	_	_
60	3/4	10	10.0	51.0	112.0	_	_	_
80	1	10	17.0	97.0	169.7	_	_	_
100	11/4	10	25.0	126.0	251.6	_	_	_
120	1 ½	10	37.0	_	_	_	_	_
140	1¾	122½"	51.0	_	_	_	_	_
160	2	10	66.0	_	_	_	_	_
180	21/4	121½"	87.0	_	_	_	_	_
200	21/2	10	105.0	_	_	_	_	_

Standard Packaged Roller Chain Lengths (Continued)

Double Strand Chain

Triple Strand Chain

Quad. Strand Chain

ACME/	SME/ BOXES		(ES		REEL LE	ENGTHS		ASME/		BOX	(ES	ASME/		BOX	(ES
ANSI or Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)	50 Ft. Weight (Lbs.)	100 Ft. Weight (Lbs.)	150 Ft. Weight (Lbs.)	250 Ft. Weight (Lbs.)	ANSI or Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)	ANSI or Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)
25-2	1/4	_	_	_	_	_	45.0	_	_	_	_	_	_	_	_
35-2	3%	10	4.5	23.0	_	_	_	35-3	3/8	10	7.0	_	_	_	_
40-2	1/2	10	8.1	41.0	82.7	123.0	_	40-3	1/2	10	12.0	_	_	_	_
50-2	5/8	10	13.5	67.0	135.0	_	_	50-3	5/8	10	20.0	_	_	_	_
60-2	3/4	10	20.0	100.0	_	_	_	60-3	3/4	10	29.0	60-4	3/4	10	40.0
80-2	1	10	34.0	163.0	_	_	_	80-3	1	10	51.0	80-4	1	10	66.0
100-2	11/4	10	51.0	_	_	_	_	100-3	11/4	10	76.0	100-4	11/4	10	100.0
120-2	1½	10	75.0	_	_	_	_	120-3	1½	10	112.0	120-4	1½	10	148.0
140-2	13/4	122½"	100.0	_	_	_	_	140-3	13/4	122½"	148.0	140-4	13/4	122½"	195.0
160-2	2	10	132.0	-	_	_	_	160-3	2	10	192.0	160-4	2	10	258.0
180-2	21/4	121½"	180.0	-	_	_	_	180-3	21/4	121½"	265.0	_	_	_	_
200-2	2½	10	215.0	_	_	_	_	200-3	2½	10	323.0	_	_	_	_

Heavy Series, Stainless Steel, DURALUBE® and TUF-FLEX® chains of comparable sizes are packaged in the same lengths as shown above.

Double-Pitch Single Strand Chain

ASME/ ANSI or		ВО	(ES	REEL LE	NGTHS	ASME/ ANSI		вох	ES	REEL LE	ENGTHS	ASME/		BO	(ES
Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)	Length (Feet)	Weight (Lbs.)	Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)	Length (Feet)	Weight (Lbs.)	ANSI or Diamond Number	Pitch (Inches)	Length (Feet)	Weight (Lbs.)
2040	1	10	3.0	200	58.0	C-2050	11/4	10	6.0	150	89.0	C-2080H	2	10	14.5
C-2040	1	10	3.2	200	70.0	2060	1½	10	7.5	100	74.0				
2050	11/4	10	5.0	175	86.0	C-2060H	1½	10	11.0	100	107.0				

Standard Packaged Roller Chain Parts

	ACME/		CONNECT	ING LINKS		ROLLER	RLINKS	OFFSE [*]	T LINKS	SPRING LOCKS
	ASME/ ANSI or	Spring (Spring Clip Type		Pin Type	Quantity	Weight	Quantity	Weight	Quantity
	Diamond Quantity Weigh		Weight (Lbs.)	Quantity per box	Weight (Lbs.)	per box	(Lbs.)	per box	(Lbs.)	per box
L								l .		

Single Strand Chain

Micropitch®	50†	0.3	_	_	50	0.3	Not Made	_	100
25	50†	0.3	_	_	50	0.3	50	0.5	100
35	50†	0.8	_	_	50	0.8	50	0.8	100
41	50†	0.8	_	_	50	0.8	50	0.8	100
40	50†	1.0	_	_	50	1.3	50	1.3	100
50	50†	2.0	_	_	50	2.5	50	2.5	100
60	50	3.0	50	3.0	50	4.0	25	2.0	100
80	50	7.5	50	7.5	50	9.0	25	4.5	100
100	_	_	1	0.3	1	0.3	1	0.3	-
120	_	_	1	0.4	1	0.5	1	0.5	_
140	_	_	1	0.6	1	0.8	1	0.8	-
160	_	_	1	0.9	1	1.3	1	1.3	-
180	_	_	1	1.5	1	2.0	1	2.0	_
200	_	_	1	1.9	1	2.5	1	2.4	_
65 x 1/8	50†	0.8	_	_	50	0.8	50	0.8	100
867 x 5/16	20	0.4	_	_	20	0.5	20	0.5	100

†NOTE: One connecting link per poly bag in box of 50.

Standard Packaged Roller Chain Parts (Continued)

40145/		CONNECT	ING LINKS		ROLLEF	RLINKS	OFFSE.	T LINKS	SPRING LOCKS					
			ip Type Cotter Pin Type		Quantity	Weight	Quantity	Weight	Quantity					
Diamond Number			Quantity Weight per box (Lbs.)		per box	(Lbs.)	per box	(Lbs.)	per box					
	ouble-Pitch Chain													
Double-P i	itch Chain	1												
Double-Pi	itch Chain 50†	1.3	50†	1.3	50	1.3	50	1.3	_					
			50† 50†	1.3 1.3	50	1.3	50 50	1.3 1.3	_ _ _					
2040	50†	1.3		_		1.3 - 2.5		_	- - -					
2040 C-2040	50† 50†	1.3 1.3	50 †	1.3	_	_	50	1.3	- - - -					
2040 C-2040 2050	50† 50† 50†	1.3 1.3 2.5	50† 50†	1.3 2.5	_	_	50 50	1.3 2.5	- - - -					

Double Strand Chain

Double of	nana ona	•••							
25-2	50†	0.5	_	_	_	_	1	0.1	_
35-2	50†	0.5	_	_	-	_	1	0.1	_
40-2	50†	1.5	_	_	-	_	1	0.1	_
50-2	50†	3.0	_	_	-	_	1	0.1	_
60-2	_	_	25	2.5	-	_	1	0.2	_
80-2	_	_	25	5.5	-	_	1	0.3	_
100-2	_	_	1	0.5	-	_	1	0.6	_
120-2	_	_	1	0.8	-	_	1	1.0	_
140-2	_	_	1	1.2	-	_	1	1.6	_
160-2	_	_	1	1.8	-	_	1	2.4	_
180-2	-	_	1	2.8	-	_	1	3.6	_
200-2	-	_	1	3.7	-	_	1	4.7	_

Triple Strand Chain

-									
35-3	1	0.02	_	_	_	_	1	0.1	_
40-3	1	0.04	_	_	_	_	1	0.1	_
50-3	1	0.10	_	_	_	_	1	0.1	-
60-3	_	_	1	0.2	_	_	1	0.2	-
80-3	_	_	1	0.4	_	_	1	0.4	-
100-3	_	_	1	0.7	_	_	1	0.9	-
120-3	_	_	1	1.1	_	_	1	1.5	-
140-3	_	_	1	1.8	_	_	1	3.6	-
200-3	_	_	1	5.4	_	_	1	7.0	-

Quadruple Strand Chain

35-4	1	0.03	_	_	_	_	1§	0.1	_
40-4	1	0.10	_	_	-	_	1	0.1	_
50-4	1	0.10	_	_	-	_	1	0.2	_
60-4	_	_	1	0.2	_	_	1	0.3	_
80-4	_	_	1	0.4	_	_	1	0.6	_
100-4	_	_	1	0.9	-	_	1	1.1	-
120-4	_	_	1	1.5	-	_	1	2.0	-
140-4	_	_	1	2.4	_	_	1	3.1	_
160-4	_	_	1	3.5	-	_	1	4.8	-

†NOTE: One connecting link per poly bag in box of 50.

&Four-Pitch Type

Parts for Heavy Series, Stainless Steel, DURALUBE®, RING LEADER® and TUF-FLEX® chain are packaged in same quantities as shown above for standard chains.

Chain Components

Connecting Link Spring Lock Type

The two pins and one link plate are furnished assembled. The standard coverplate is designed for a slip-fit on the pins. It is held in place by a flat spring-steel lock, split at one end to permit installation in grooves at the end of each pin. Press-fit coverplates are also available and are recommended for heavy duty applications.

Roller Link

Standard for all sizes of roller chains. They are furnished as complete roller link assemblies. The two bushings are press-fit in each of the link plates. The same roller links are used for single and multiple strand chains.

Single-Pitch Offset Link Slip-Fit Type

This link is furnished with slip-fit pin unassembled in the offset link plates. The flat milled on one end of the pin prevents it from turning in the link plate.

Four-Pitch Offset Link Assembly Press-Fit Type For Multiple Strand Chain Only

Pins are press-fit in offset link pitch holes. Four-pitch length permits the use of BCL connecting links on either end, giving maximum capacity of chain assembly.

Connecting Link Cotter Pin Type

The two pins and one link plate are furnished assembled. The coverplate may be either press-fit or slip-fit on the pins. Press-fit connecting links are recommended for heavy duty applications. Press-fit coverplates are standard on multiple strand oil field chains.

Two-Pitch Offset Link Assembly Press-Fit Type For Single Strand Chain Only

This type of assembly is available for all sizes of standard single strand chains, and consists of an offset link and a roller link assembled together. The pin is press-fit in the offset link plates and is riveted.

The press-fit construction of this assembly greatly increases its structural rigidity, reliability, and durability. For these reasons, the two-pitch offset assembly is recommended in preference to the single-pitch offset link.

BCL Connecting Link Bushed Centerplate Link

Standard for all press-fit type multiple strand chains of \(\frac{5}{8} \)" pitch and larger. Bushings are a heavy press-fit in the centerplate pitch holes, but are a close slip-fit on the pins. BCL connecting links are easily installed and removed as ordinary connecting links, but have the increased fatigue strength of press-fit center plate chain. The coverplate is press-fit on the pins.

Chain Length in Pitches to Feet Conversion Table

	Chain Length in Pitches Converted to Feet Chain Pitch—Inches												
No. of Pitches	1/4	3/8	1/2	5%	3/4	1	1¼	1½	13/4	2	21/4	2 ½	3
						Chain L	ength—Feet	t					
1 2 3 4 5	0.02 0.04 0.06 0.08 0.10	0.03 0.06 0.09 0.13 0.16	0.04 0.08 0.13 0.17 0.21	0.05 0.10 0.16 0.21 0.26	0.06 0.13 0.19 0.25 0.31	0.08 0.17 0.25 0.33 0.42	0.10 0.21 0.31 0.42 0.52	0.13 0.25 0.38 0.50 0.63	0.15 0.29 0.44 0.58 0.73	0.17 0.33 0.50 0.67 0.83	0.19 0.38 0.56 0.75 0.94	0.21 0.42 0.63 0.83 1.04	0.25 0.50 0.75 1.00 1.25
6 7 8 9 10 11	0.13 0.15 0.17 0.19 0.21	0.19 0.22 0.25 0.28 0.31	0.25 0.29 0.33 0.38 0.42	0.31 0.36 0.42 0.47 0.52	0.38 0.44 0.50 0.56 0.63	0.50 0.58 0.67 0.75 0.83	0.63 0.73 0.83 0.94 1.04	0.75 0.88 1.00 1.13 1.25	0.88 1.02 1.17 1.31 1.46	1.00 1.17 1.33 1.50 1.67	1.13 1.31 1.50 1.69 1.88	1.25 1.46 1.67 1.88 2.08	1.50 1.75 2.00 2.25 2.50
12 13 14 15	0.25 0.27 0.29 0.31 0.33	0.38 0.41 0.44 0.47 0.50	0.50 0.54 0.58 0.63 0.67	0.63 0.68 0.73 0.78 0.83	0.75 0.81 0.88 0.94 1.00	1.00 1.08 1.17 1.25 1.33	1.25 1.35 1.46 1.56	1.50 1.63 1.75 1.88 2.00	1.75 1.90 2.04 2.19 2.33	2.00 2.17 2.33 2.50 2.67	2.25 2.44 2.63 2.81 3.00	2.50 2.71 2.92 3.13 3.33	3.00 3.25 3.50 3.75 4.00
17 18 19 20 21	0.35 0.38 0.40 0.42 0.44 0.46	0.53 0.56 0.59 0.63 0.66 0.69	0.71 0.75 0.79 0.83 0.88 0.92	0.89 0.94 0.99 1.04 1.09	1.06 1.13 1.19 1.25 1.31 1.38	1.42 1.50 1.58 1.67 1.75 1.83	1.77 1.88 1.98 2.08 2.19 2.29	2.13 2.25 2.38 2.50 2.63 2.75	2.48 2.63 2.77 2.92 3.06 3.21	2.83 3.00 3.17 3.33 3.50 3.67	3.19 3.38 3.56 3.75 3.94 4.13	3.54 3.75 3.96 4.17 4.38 4.58	4.25 4.50 4.75 5.00 5.25 5.50
23 24 25 26 27	0.48 0.50 0.52 0.54 0.56	0.72 0.75 0.78 0.81 0.84	0.96 1.00 1.04 1.08 1.13	1.20 1.25 1.30 1.35 1.41	1.44 1.50 1.56 1.63 1.69	1.92 2.00 2.08 2.17 2.25	2.40 2.50 2.60 2.71 2.81	2.88 3.00 3.13 3.25 3.38	3.35 3.50 3.65 3.79 3.94	3.83 4.00 4.17 4.33 4.50	4.31 4.50 4.69 4.88 5.06	4.79 5.00 5.21 5.42 5.63	5.75 6.00 6.25 6.50 6.75
12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 29 30 31 32 32 33 34 35 36 37 38 39 41 42 44 45 46 47 48 49 55 56 57 58 58 59 59 59 59 59 59 59 59 59 59 59 59 59	0.02 0.04 0.06 0.08 0.10 0.13 0.15 0.17 0.19 0.23 0.25 0.27 0.23 0.25 0.27 0.29 0.31 0.33 0.38 0.40 0.42 0.44 0.48 0.45 0.52 0.54 0.56 0.67 0.69 0.73 0.77 0.77 0.77 0.77 0.77 0.77 0.77	0.03 0.06 0.09 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.34 0.41 0.47 0.50 0.53 0.56 0.69 0.72 0.75 0.78 0.81 0.84 0.89 0.94 0.97 1.00 1.03 1.16 1.19 1.22 1.25 1.31 1.34 1.34 1.34 1.34 1.47 1.50 1.53 1.56 1.59 1.63 1.66 1.69 1.72 1.75 1.78 1.81 1.84 1.88	0.04 0.08 0.13 0.17 0.25 0.29 0.33 0.38 0.42 0.46 0.50 0.54 0.83 0.87 0.71 0.75 0.79 0.83 0.89 0.96 1.00 1.04 1.08 1.17 1.25 1.29 1.33 1.46 1.50 1.54 1.55 1.50 1.51 1.75 1.79 1.88 1.92 1.92 1.93 1.94 1.95 1.96 1.90	0.05 0.16 0.21 0.26 0.31 0.36 0.42 0.47 0.57 0.63 0.68 0.73 0.83 0.94 0.99 1.04 1.15 1.20 1.35 1.41 1.46 1.51 1.56 1.61 1.67 1.77 1.82 1.88 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93	0.06 0.13 0.19 0.25 0.31 0.38 0.44 0.50 0.56 0.69 0.75 0.81 0.88 0.94 1.00 1.13 1.19 1.25 1.31 1.38 1.44 1.50 1.56 1.63 1.75 1.88 1.94 2.00 2.19 2.25 2.31 2.38 2.49 3.00 3.13 3.19 3.25 2.81 2.88 2.94 3.00 3.13 3.19 3.25 3.31 3.19 3.25 3.31 3.31 3.19 3.25 3.31 3.38 3.44 3.50 3.56 3.63 3.75 3.88 3.94 4.00 4.13	0.08 0.17 0.25 0.30 0.42 0.50 0.67 0.75 0.83 0.92 1.08 1.108 1.108 1.109 1.25 1.33 1.42 1.50 1.67 1.75 1.83 1.92 2.08 2.17 2.23 2.25 2.23 2.25 2.26 2.27 2.28 3.30 3.31 3.32 2.25 3.33 3.35 3.35 3.35 3.35 3.35	0.10 0.21 0.31 0.42 0.52 0.63 0.73 0.83 0.94 1.04 1.15 1.35 1.46 1.56 1.57 1.88 1.98 2.19 2.40 2.50 2.71 2.99 2.40 2.71 2.99 3.13 3.23 3.44 3.65 3.75 3.75 3.85 3.96 4.17 4.27 4.38 4.58 4.69 4.79 4.90 5.01 6.03 5.04 6.04 6.05	0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00 1.13 1.25 1.38 1.03 1.75 1.88 2.00 2.63 2.75 2.88 3.13 3.25 2.38 2.50 2.63 3.75 3.88 4.00 4.13 4.25 4.38 4.50 4.63 4.75 5.88 5.00 5.63 6.75 5.88 6.00 6.13 6.25 6.38 6.50 6.63 6.75 6.88 7.125 7.38 8.00 8.63 7.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63 6.75 8.88 8.00 8.63	0.15 0.29 0.44 0.58 0.73 0.88 1.02 1.17 1.31 1.46 1.60 1.75 1.90 2.19 2.38 2.63 2.77 2.92 3.06 3.21 3.35 3.65 3.79 3.94 4.03 4.03 4.38 4.52 4.67 4.81 5.10 5.54 5.69 5.83 6.13 6.27 6.42 6.56 6.71 6.85 7.15 7.29 7.44 7.58 8.17 8.31 8.46 8.75 8.90 9.04 9.19 9.33 9.48	0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.57 1.83 2.17 2.33 2.50 2.67 2.83 3.00 3.17 2.33 3.50 3.67 3.83 4.00 4.17 4.33 4.50 5.10 5.10 5.10 5.10 5.10 5.10 6.67 6.83 6.17 6.33 6.67 6.83 6.17 6.33 6.17 7.50 7.67 7.83 8.00 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.17 9.33 9.50 9.67 9.83 9.90 9.91	0.19 0.38 0.56 0.75 0.94 1.13 1.50 1.69 1.88 2.06 2.24 2.63 2.81 3.00 3.38 3.56 3.75 3.94 4.31 4.50 4.69 4.88 5.25 5.44 5.63 5.81 6.00 6.19 6.38 6.56 6.75 6.94 7.13 7.50 7.69 7.88 8.06 6.75 6.94 9.19 9.38 8.61 9.00 9.19 9.38 8.61 9.00 9.19 9.38 8.61 9.10 1.13 10.50 10.69 10.88 11.06 11.25 11.44 11.63 11.81 11.20 12.38 11.65 11.44 11.63 11.81 11.20 12.38 11.69	0.21 0.42 0.63 0.83 1.04 1.25 1.46 1.67 1.88 2.29 2.50 2.71 2.92 2.71 2.92 2.71 2.92 3.13 3.354 4.79 5.00 5.21 5.43 4.58 4.79 5.00 6.25 6.46 6.88 7.29 7.50 6.88 7.29 7.51 7.92 8.33 8.54 8.76 6.88 7.29 7.51 7.92 8.33 8.54 8.76 6.88 7.29 7.50 10.63 11.67 11.88 12.08 11.25 11.46 11.88 12.29 12.50 11.47 11.88 12.29 12.50 12.91 13.33 13.54 14.79	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.75 3.00 3.25 3.75 4.00 4.25 4.50 4.75 5.25 5.75 6.00 7.25 7.70 8.25 8.50 6.25 6.57 7.00 7.25 7.50 8.25 8.75 9.00 10.25 11.00 11.25 11.75 12.05 11.75 12.05 11.75 12.05 11.75 12.05 11.75 12.05 11.75 12.05 11.75 12.05 13.75 14.00 14.25 14.75 15.00 15.55 15.50 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00 15.75 15.00
34 35 36 37 38	0.71 0.73 0.75 0.77 0.79 0.81	1.06 1.09 1.13 1.16 1.19	1.42 1.46 1.50 1.54 1.58	1.77 1.82 1.88 1.93 1.98 2.03	2.13 2.19 2.25 2.31 2.38 2.44	2.83 2.92 3.00 3.08 3.17	3.54 3.65 3.75 3.85 3.96 4.06	4.25 4.38 4.50 4.63 4.75 4.88	4.96 5.10 5.25 5.40 5.54 5.69	5.67 5.83 6.00 6.17 6.33 6.50	6.38 6.56 6.75 6.94 7.13	7.08 7.29 7.50 7.71 7.92 8.13	8.50 8.75 9.00 9.25 9.50
40 41 42 43 44	0.83 0.85 0.88 0.90 0.92	1.25 1.28 1.31 1.34 1.38	1.67 1.71 1.75 1.79 1.83	2.08 2.14 2.19 2.24 2.29	2.50 2.56 2.63 2.69 2.75	3.33 3.42 3.50 3.58 3.67	4.17 4.27 4.38 4.48 4.58	5.00 5.13 5.25 5.38 5.50	5.83 5.98 6.13 6.27 6.42	6.67 6.83 7.00 7.17 7.33	7.50 7.69 7.88 8.06 8.25	8.33 8.54 8.75 8.96 9.17	10.00 10.25 10.50 10.75 11.00
45 46 47 48 49	0.94 0.96 0.98 1.00 1.02	1.41 1.44 1.47 1.50 1.53	1.88 1.92 1.96 2.00 2.04 2.08	2.34 2.40 2.45 2.50 2.55 2.60	2.81 2.88 2.94 3.00 3.06 3.13	3.75 3.83 3.92 4.00 4.08 4.17	4.69 4.79 4.90 5.00 5.10 5.21	5.63 5.75 5.88 6.00 6.13 6.25	6.56 6.71 6.85 7.00 7.15 7.29	7.50 7.67 7.83 8.00 8.17 8.33	8.44 8.63 8.81 9.00 9.19 9.38	9.38 9.58 9.79 10.00 10.21	11.25 11.50 11.75 12.00 12.25
51 52 53 54 55	1.06 1.08 1.10 1.13 1.15	1.59 1.63 1.66 1.69 1.72	2.13 2.17 2.21 2.25 2.29	2.66 2.71 2.76 2.81 2.86	3.19 3.25 3.31 3.38 3.44	4.25 4.33 4.42 4.50 4.58	5.31 5.42 5.52 5.63 5.73	6.38 6.50 6.63 6.75 6.88	7.44 7.58 7.73 7.88 8.02	8.50 8.67 8.83 9.00 9.17	9.56 9.75 9.94 10.13 10.31	10.63 10.83 11.04 11.25 11.46	12.75 13.00 13.25 13.50 13.75
56 57 58 59 60	1.17 1.19 1.21 1.23 1.25	1.75 1.78 1.81 1.84 1.88	2.33 2.38 2.42 2.46 2.50	2.92 2.97 3.02 3.07 3.13	3.50 3.56 3.63 3.69 3.75	4.67 4.75 4.83 4.92 5.00	5.83 5.94 6.04 6.15 6.25	7.00 7.13 7.25 7.38 7.50	8.17 8.31 8.46 8.60 8.75	9.33 9.50 9.67 9.83 10.00	10.50 10.69 10.88 11.06 11.25	11.67 11.88 12.08 12.29 12.50	14.00 14.25 14.50 14.75 15.00
61 62 63 64 65 66	1.29 1.31 1.33 1.35 1.38	1.91 1.94 1.97 2.00 2.03 2.06 2.09	2.58 2.63 2.67 2.71 2.75	3.23 3.28 3.33 3.39 3.44	3.88 3.94 4.00 4.06 4.13	5.17 5.25 5.33 5.42 5.50	6.46 6.56 6.67 6.77 6.88 6.98	7.75 7.88 8.00 8.13 8.25	9.04 9.19 9.33 9.48 9.63 9.77	10.33 10.50 10.67 10.83 11.00 11.17	11.63 11.81 12.00 12.19 12.38	12.92 13.13 13.33 13.54 13.75	16.25 16.50
67 68 69 70 71 72	1.40 1.42 1.44 1.46 1.50 1.52 1.54	2.13 2.16 2.19 2.22 2.25	2.79 2.83 2.88 2.92 2.96 3.00 3.04 3.08 3.13	3.49 3.54 3.59 3.65 3.70 3.75	4.19 4.25 4.31 4.38 4.44 4.50	5.58 5.67 5.75 5.83 5.92 6.00	7.08 7.19 7.29 7.40 7.50	8.38 8.50 8.63 8.75 8.88 9.00	9.77 9.92 10.06 10.21 10.35 10.50	11.17 11.33 11.50 11.67 11.83 12.00 12.17 12.33 12.50	12.56 12.75 12.94 13.13 13.31	13.96 14.17 14.38 14.58 14.79 15.00	16.75 17.00 17.25 17.50 17.75
72 73 74 75 76 77	1.52 1.54 1.56 1.58 1.60	2.28 2.31 2.34 2.38 2.41	3.17	3.80 3.85 3.91 3.96 4.01	4.50 4.56 4.63 4.69 4.75 4.81	6.08 6.17 6.25 6.33 6.42	7.60 7.71 7.81 7.92 8.02	9.13 9.25 9.38 9.50 9.63 9.75	10.65 10.79 10.94 11.08 11.23	12.17 12.33 12.50 12.67 12.83	13.69 13.88 14.06 14.25 14.44	15.00 15.21 15.42 15.63 15.83 16.04	18.00 18.25 18.50 18.75 19.00 19.25 19.50
76 77 78 79 80 81 82 83 84	1.58 1.60 1.63 1.65 1.67 1.69 1.71 1.73 1.75 1.77	2.44 2.47 2.50 2.53 2.56 2.59	3.21 3.25 3.29 3.33 3.38 3.42 3.46 3.50 3.54 3.54 3.58 3.63 3.67 3.71	4.06 4.11 4.17 4.22 4.27 4.32	4.88 4.94 5.00 5.06 5.13 5.19 5.25 5.31 5.38	6.50 6.58 6.67 6.75 6.83 6.92 7.00 7.08	8.13 8.23 8.33 8.44 8.54 8.65 8.75 8.85 8.96	9.75 9.88 10.00 10.13 10.25	11.38 11.52 11.67 11.81 11.96	13.00 13.17 13.33 13.50 13.67	14.63 14.81 15.00 15.19 15.38	15.83 16.04 16.25 16.46 16.67 16.88 17.08 17.29 17.50 17.71 17.92 18.13 18.33 18.54 18.75	19.50 19.75 20.00 20.25 20.50 20.75
86 87 88	1.81	2.59 2.63 2.66 2.69 2.72 2.75	3.50 3.54 3.58 3.63 3.67	4.11 4.17 4.22 4.27 4.32 4.38 4.43 4.48 4.53 4.53	5.25 5.31 5.38 5.44 5.50 5.56 5.63	7.00 7.08 7.17 7.25 7.33 7.42	9.06 9.17	10.50 10.63 10.75 10.88 11.00	12.10 12.25 12.40 12.54 12.69 12.83	14.00 14.17 14.33 14.50 14.67	15.75 15.94 16.13 16.31 16.50	17.50 17.71 17.92 18.13 18.33	21.00 21.25 21.50 21.75
89 90	1.83 1.85 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02	2.78 2.81 2.84 2.88 2.91	3.75	4.64 4.69 4.74 4.79 4.84	5.56 5.63 5.69 5.75 5.81 5.88 5.94 6.00 6.06	7.50	9.27 9.38 9.48 9.58 9.69 9.79 9.90	11.13 11.25 11.38 11.50 11.63	12.98 13.13 13.27 13.42 13.56	14.83 15.00 15.17 15.33 15.50	16.69 16.88 17.06 17.25 17.44	18.54 18.75 18.96 19.17 19.38	22.00 22.25 22.50 22.75 23.00 23.25 23.50 23.75
91 92 93 94 95 96 97 98 99	1.98 2.00 2.02 2.04 2.06 2.08	2.94 2.97 3.00 3.03 3.06 3.09 3.13	3.79 3.83 3.88 3.92 3.96 4.00 4.04 4.08 4.13 4.17	4.90 4.95 5.00 5.05 5.10 5.16 5.21	5.94 6.00 6.06 6.13 6.19 6.25	7.58 7.67 7.75 7.83 7.92 8.00 8.08 8.17 8.25 8.33	9.90 10.00 10.10 10.21 10.31 10.42	9.88 10.00 10.13 10.25 10.38 10.50 10.63 10.75 10.88 11.00 11.13 11.25 11.38 11.50 11.63 11.75 11.88 12.00 12.13 12.25 12.38 12.50	13.71 13.85 14.00 14.15 14.29 14.44 14.58	12.67 12.83 13.00 13.17 13.33 13.50 13.67 13.83 14.00 14.17 14.33 14.50 14.67 15.33 15.50 15.67 15.67 15.67 16.33 16.50 16.50	13.88 14.06 14.25 14.44 14.63 14.81 15.00 15.19 15.38 15.56 15.75 16.94 16.31 16.50 16.69 17.06	18.96 19.17 19.38 19.58 19.79 20.00 20.21 20.42 20.63 20.83	23.75 24.00 24.25 24.50 24.75 25.00

www.diamondchain.com

ORDERING INFORMATION

Terms and Conditions

- I. Unless otherwise shown hereon, all terms are f.o.b. Seller's plant and net 30 days at Seller's prices in effect on the date of shipment. Shipments and deliveries shall at all times be subject to approval of the Seller's Credit Department. If Buyer shall fail to make any payments in accordance with the terms hereof, Seller may cancel this order as to any undelivered items, and in addition to its other rights and remedies, but not in limitation thereof, at Seller's option, defer or withhold shipments or deliveries hereunder (or under any other contract with Buyer) except upon Seller's receipt of cash before shipment or such security as Seller deems satisfactory.
- 2. Unless otherwise shown as included in the price, such price does not include any freight rate increases and/or added expense resulting from compliance with Buyer's shipping instructions whether or not reflected in Buyer's order; the expense of intra-city delivery to rail siding on shipments by rail; any applicable manufacturer's sales, use or value added taxes; import or export duties; the expense of special preparation for export including export packaging, consular invoices, export declarations, certificates of origin, insurance in transit or similar items; and examination or inspection charges incident to inspection by other than Seller's employees or agents. Buyer will be invoiced for those items where applicable; import licenses, foreign exchange and customs approval required in connection with the purchase, delivery or payment of goods, materials and products (hereinafter referred to as "goods") are to be obtained by and provided at Buyer's expense. In no event shall Buyer's shipping instructions waive any term or condition as to delivery herein.
- 3. Starting costs cover in part tools, dies, and fixtures complementing equipment peculiar to the Seller's facility and would ordinarily have little use elsewhere. Title to such tooling remains with the Seller.
- 4. Because of manufacturing allowances essential in the production of made-to-order items, the Seller reserves the right to ship and Buyer agrees to accept an overrun of any quantity up to and including 10% when made-to-order items are ordered.
- 5. Deliveries shall be considered made when the goods hereunder, or any part thereof, are either loaded on inland carriers evidenced by transportation receipts or placed in storage, whichever shall be earlier in time. At that time title to and risk of loss of the goods shall pass to Buyer. Seller shall not be responsible for delay in or failure of deliveries resulting from any cause beyond Seller's control, including without limitation: fire, act of God or force majesture, riot, civil demonstrations, insurrection, war or national emergency, strike or labor dispute, freight embargo or transportation delay, shortage of labor, inability to secure fuel, material, supplies or power at current prices or on account of shortage thereof, demands exceeding Seller's manufacturing or delivery capacity, or any governmental law, act, order, rule or regulation issued by any official or governmental agency (local, state, federal or foreign) affecting the conduct of Seller's business and with which Seller in its judgment or discretion deems it advisable to comply whether or not it may have any legal duty to do so. Buyer agrees to inspect at Buyer's expense and risk all goods before acceptance, and to refuse acceptance unless any loss or damage in transit is fully noted on the delivery bills and receipts. Seller assumes no responsibility for damage to or loss of goods occurring during shipment or delivery, and Buyer agrees to make all claims for any such damage or loss.
- 6. Cancellation or change in any order by Buyer shall not be effective without notice received, agreed to, and confirmed in writing by Seller. In the event Seller in its discretion approves Buyer's cancellation or change of an order, Buyer agrees to pay a reasonable cancellation or inventory carrying charge. Seller's prior written consent must be obtained before returning any goods.

Terms and Conditions

- 7. SELLER EXPRESSLY EXCLUDES ALL WARRANTIES, GUARANTEES AND REPRESENTATIONS, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, MATERIALS, WORKMANSHIP, DESIGN AND SUITABILITY FOR A SPECIFIED OR INTENDED PURPOSE. In lieu thereof, any goods which upon Seller's determination are defective due to faulty material or workmanship or of Seller's design and are unsuitable for Buyer's specified or ordinarily intended use, as determined by Seller, will be repaired, or replaced, f.o.b. point of origin, or the unit purchase price refunded, at Seller's option; provided that the goods are returned (upon Seller's written consent first being given), or the same are rejected, in either event within six (6) months of their sale; except that as to goods purchased by Seller from others and resold to Buyer or incorporated in Seller's goods, Buyer shall have whatever warranty is available from Seller's supplier which shall be Buyer's sole recourse. Seller shall not be liable for Buyer's loss of profit or any special or consequential damage or loss, nor for any cost incurred by Buyer for alteration, field modification, repair or work done on the goods without Seller's express approval in writing prior to any such alteration, field modifications, repair or work. Seller's total liability shall in no event exceed the purchase price of the material specified herein.
- 8. Unless specifically stated to the contrary on the face of the order, the Buyer represents that none of the materials supplied hereunder are to be used in a motor vehicle in such a manner as to be subject to the safety standards adopted under the National Traffic and Motor Vehicle Safety Act of 1966, and Buyer agrees to indemnify the Seller against any liability under said Act if such representation is not correct. If the materials are to be subject to such standards and the Buyer specifically so states, the Seller, if it accepts the order, warrants that the material complies with all applicable standards under said Act.
- 9. Seller's prior written consent must be obtained before returning goods for replacement or credit.
- 10. Any action by Buyer under or for breach of this agreement must be commenced within two (2) years after the cause of action has accrued.
- 11. Buyer's order is accepted on the terms and conditions stated herein and Seller's acceptance of Buyer's order is expressly made conditioned upon Buyer's assent to such terms and conditions. No agreement or understanding, oral or written, shall be binding on Seller (whether contained in Buyer's purchase forms or otherwise), other than set forth herein, if such shall in any way modify or waive the terms or conditions herein, unless hereafter made in writing and signed by Seller's authorized representative. Waiver by Seller of any default hereunder shall not be deemed a waiver by Seller of any other or subsequent default which may thereafter occur.
- 12. These terms and conditions shall be construed in accordance with the laws of the State of Illinois.